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Preface
Modern	 technology	 is	 developing	 rapidly,	 and	 for	 this	 reason,	 future	 engineers	 need	 to
acquire	advanced	knowledge	in	science	and	technology	that	includes	advanced	knowledge
of	 electromagnetic	 phenomena.	 Hence,	 we	 have	 developed	 a	 course	 in	 applied
electromagnetics	 that	 resulted	 in	 this	 book.	 In	 contrast	 to	 the	 conventional	 texts	 on
electromagnetics,	 substantial	 attention	 is	 paid	 to	 the	 optical	 part	 of	 the	 electromagnetic
spectrum	and	to	electromagnetic	waves	in	different	media	and	structures.	Each	topic	has
solved	examples.	Problems	at	the	end	of	each	chapter	are	supplemented	by	either	hints	or
answers	 to	 help	 students	 to	 master	 the	 material	 and	 to	 solve	 typical	 problems	 of
electromagnetics	and	optics.

The	book	 consists	 of	 four	 sections.	Section	I	 has	 three	 chapters	 that	 review	 the	most
important	aspects	of	Maxwell’s	equations.	Students	are	expected	 to	be	 familiar	with	 the
material	included	in	Section	I	from	their	physics	courses	taken	previously.	If	students	are
well	prepared	by	these	prerequisite	courses,	an	instructor	can	review	this	section	very	fast.

Section	II	(Chapters	4	through	7)	and	Section	III	(Chapters	8	 through	10)	are	 the	core
material	of	the	book.	Chapter	4,	“Electromagnetic	Waves	in	Homogeneous	Media	without
Absorption,”	 covers	 the	 basic	 equations	 describing	 electromagnetic	 waves	 in	 a
homogeneous,	 isotropic,	 nonabsorbing	medium,	 as	well	 as	 the	 basic	 properties	 of	 these
waves.

Chapter	5,	 “Electromagnetic	Fields	 and	Waves	 at	 the	 Interface	between	Two	Media,”
discusses	 the	 amplitude	 and	 energy,	 reflection,	 and	 transmission	 coefficients	 of	 an
electromagnetic	wave	at	an	 interface,	 the	 laws	of	 reflection	and	 refraction,	 total	 internal
reflection,	and	reflection	from	a	dielectric	layer.

Chapter	 6,	 “Electromagnetic	 Waves	 in	 Anisotropic	 and	 Optically	 Active	 Media,”	 is
devoted	to	topics	that	are	rarely	discussed	in	the	previous	studies.	An	anisotropic	medium
is	 one	 in	 which	 physical	 properties	 vary	 along	 different	 directions.	 In	 an	 anisotropic
medium,	there	are	specific	directions	(or	a	direction	known	as	the	axis	of	symmetry)	that
are	 associated	 with	 the	 structure	 of	 the	 medium	 or	 with	 an	 external	 electric	 and/or
magnetic	 field.	Anisotropy	of	 a	medium	 leads	 to	 the	 fact	 that	 the	magnitude	of	 a	wave
vector,	the	group	and	phase	velocity	of	the	wave,	and	its	polarization	parameters	depend
not	only	on	the	frequency	but	also	on	the	direction	of	the	wave	propagation	with	respect	to
the	axis	of	symmetry.

Chapter	 7,	 “Electromagnetic	 Waves	 in	 Conducting	 Media,”	 covers	 dielectric
permittivity	 and	 impedance	 of	 metals,	 skin	 effect,	 and	 surface	 waves	 at	 the	 interface
between	 a	 dielectric	 and	 a	 conductor.	 An	 electromagnetic	 wave	 propagating	 through	 a
conducting	medium	 loses	 some	of	 its	 energy	 that	 is	 transformed	predominantly	 into	 the
thermal	 energy	of	 that	material.	Superconductivity	 is	 also	discussed	 as	 an	 example	of	 a
conducting	medium	without	losses.

Chapter	8,	“Waves	in	Periodic	Structures,”	covers	in	detail	diffraction	phenomena	such
as	diffraction	by	a	slit,	by	a	1D	lattice,	and	by	a	3D	lattice.	Special	attention	is	paid	to	an
often	omitted	 topic:	waves	 in	periodic	structures	(photonic	crystals).	Forbidden	photonic
bands	in	the	reflection	and	transmission	spectra	are	formed	for	a	wave	propagating	in	the



periodic	medium	along	a	periodicity	axis.

Chapter	9,	“Waves	in	Guiding	Structures,”	in	addition	to	the	conventional	waveguides
(two	parallel	metal	planes,	a	rectangular	waveguide,	and	two-wire,	coaxial,	and	stripline
transmission	lines),	this	chapter	also	covers	optical	waveguides	(optical	fibers).

Chapter	 10,	 “Emission	 of	 Electromagnetic	 Waves,”	 is	 devoted	 to	 emission	 by
accelerated	charges,	by	an	electric	dipole	(Hertz	antenna),	and	by	an	elementary	magnetic
dipole.	Directional	diagrams	of	different	sources	of	electromagnetic	radiation	and	types	of
antennas	 are	 also	 discussed.	 Students	 are	 introduced	 to	 the	 near-field	 zone	 that	 extends
from	a	source	to	distances	that	have	the	same	order	of	magnitude	with	the	wavelength	of
the	electromagnetic	wave	generated	by	the	source	and	to	the	far-field	zone	that	is	located
at	a	distance	much	greater	than	the	wavelength	of	the	emitted	wave.

Section	 IV	 (Chapters	 11	 through	 13),	 “Advanced	 Topics	 in	 Electromagnetics	 and
Optics,”	introduces	students	to	recent	advances	in	the	field	of	electromagnetics	and	optics.
In	particular:

Chapter	 11,	 “Electromagnetic	 Waves	 in	 Gyrotropic	 Media,”	 discusses	 the
electromagnetic	 waves	 in	 gyrotropic	 media,	 magnetoactive	 plasma,	 and	 ferrites.	 Such
media	have	the	ability	to	rotate	the	polarization	plane	of	linearly	polarized	electromagnetic
waves,	which	propagate	 through	 them.	The	properties	of	 the	media	are	controlled	by	an
external	magnetic	field.

Chapter	12,	“Electromagnetic	Waves	in	Amplyifying	Media,”	addresses	the	media	that
can	amplify	optical	radiation.	Amplification	of	waves	in	a	medium	is	due	to	the	induced
radiation	 emitted	 by	 the	 excited	 atoms	 of	 the	 medium.	 The	 basic	 principles	 of
amplification	 are	 discussed	 and	 students	 are	 introduced	 to	 lasers	 where	 amplification
occurs	due	to	the	induced	coherent	emission	by	excited	atoms	under	the	influence	of	the
electromagnetic	wave	field.

Chapter	 13,	 “Electromagnetic	 Waves	 in	 Media	 with	 Material	 Parameters	 That	 Are
Complex	Numbers,”	is	devoted	to	a	detailed	discussion	of	wave	propagation	in	media	for
which	the	relative	dielectric	permittivity	or	the	relative	magnetic	permeability	(or	both)	is
a	complex	number	with	a	nonzero	imaginary	part.	Electromagnetic	tunneling	and	negative
refraction	in	media	with	negative	permittivity	and	permeability	are	also	discussed.

As	it	has	been	shortly	presented	earlier,	the	book	covers	both	conventional	material	and
material	that	is	very	rarely	discussed	in	undergraduate	textbooks,	such	as	superconductors,
surface	waves,	plasmas,	photonic	crystals,	and	negative	refraction.

Instructors	can	use	the	first	10	chapters	for	the	undergraduate	course	with	a	short	review
of	Chapters	11	through	13.

This	 book	 can	 also	 be	 used	 as	 a	 review	 of	 electromagnetics	 and	 optics	 for	 graduate
students.	 In	 this	 case,	 the	 first	 3	 chapters	 can	 be	 discussed	 briefly,	 while	 the	 last	 10
chapters	become	the	focus	of	the	course.

The	authors	have	many	professional	colleagues	and	friends	who	must	be	acknowledged.
Without	their	contributions,	this	work	would	not	have	been	completed.	Special	thanks	to
the	 Division	 of	 Undergraduate	 Education	 of	 the	 National	 Science	 Foundation	 for	 their
partial	 support	 of	 this	 work	 through	 the	 TUES	 Program	 (Program	Director	 Don	 Lewis



Millard).	The	authors	especially	 thank	Professor	Athos	Petrou	 for	his	editorial	efforts	 in
critical	 reading	of	 this	 book	 and	 for	 his	many	valuable	 comments	 and	 suggestions.	The
authors	also	thank	Yudi	Liu,	Xiang	Zhang,	Nizami	Vagidov,	Yanshu	Li,	and	Tim	Yore	for
their	help	in	the	preparation	of	the	figures	and	some	editorial	help.	The	earlier	versions	of
this	manuscript	were	used	in	teaching	EE324,	“Applied	Electromagnetics,”	a	course	in	fall
2014	and	 fall	2015	at	 the	University	at	Buffalo,	 the	State	University	of	New	York.	The
authors	also	wish	to	thank	the	students	in	their	courses	whose	valuable	feedback	helped	to
substantially	improve	this	book.	The	earliest	version	was	partially	used	for	the	EE324	in
fall	2013.	The	authors	also	thank	the	students	and	their	instructor,	Dr.	Victor	Pogrebnyak,
for	some	constructive	feedback	that	they	have	given.	Finally,	the	authors	wish	to	thank	our
loved	ones	for	their	support	and	for	forgiving	us	for	not	devoting	more	time	to	them	while
working	on	this	book.



List	of	Notations

1D One	dimensional

2D Two	dimensional

3D Three	dimensional

A Surface	area

A21 Einstein	coefficient

A Amplitude	of	a	wave

A+ Amplitude	of	a	forward	wave

A− Amplitude	of	a	backward	wave

B Vector	of	magnetic	field

B Magnetic	field

Bc Critical	magnetic	field

Bc0 Critical	magnetic	field	at	zero	temperature

Bl Tangential	projection	of	vector	B

b Slit	width

C Capacitance	of	a	conductor	or	a	capacitor

c Speed	of	light	in	vacuum

D Vector	of	electric	displacement

D Angular	dispersion

d Lattice	constant



E Vector	of	electric	field

Eǁ Longitudinal	component	of	electric	vector	E

E⊥ Transverse	component	of	electric	vector	E

Ee Vector	of	electric	field	of	an	extraordinary	wave

Eo Vector	of	electric	field	of	an	ordinary	wave

E0 Electric	field	amplitude	of	an	incident	wave

e Unit	vector

e Absolute	value	of	an	electron	charge

F Force,	vector

FA Ampere’s	force

FL Lorentz	force

Fr Damping	force

Frad Radiative	friction	force

f Frequency

fl Oscillator	strength

g Damping	constant
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grad	φ Potential	gradient

H Magnetic	field	intensity	vector
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ha Operating	height	of	a	receiving	antenna

i,	j,	k Unit	vectors	of	axis	along	the	Cartesian	coordinate	axes

I Current

Ic Critical	current

Ii Induced	current

Imacro Algebraic	sum	of	macroscopic	currents	enclosed	inside	a	closed	path	L

Imicro Algebraic	sum	of	microscopic	currents	enclosed	inside	a	closed	path	L

j Current	density,	vector

j Current	density

k Wave	vector

k Wave	number,	absolute	value	of	wave	vector

k0 Wave	vector	in	vacuum

kB Bloch	wave	vector

kB Boltzmann’s	constant

ke Unit	system	coefficient

km Proportionality	coefficient

k″ Attenuation	(amplification)	coefficient

κ Extinction	coefficient

L Inductance

Lopt Optical	path	length

l Dipole	vector

l Dipole	length



lcoh Coherence	length

lm Equivalent	length	of	magnetic	dipole

M Magnetization,	the	magnetic	moment	per	unit	volume	of	a	medium

M Mutual	inductances

M0 Saturation	magnetization

m Mass

mp Mass	of	protons

me Mass	of	electrons

n Unit	vector

n Refractive	index

ne Refractive	index	for	an	extraordinary	wave

no Refractive	index	for	an	ordinary	wave

ns Density	of	“superconducting”	electrons

P Polarization	vector

p Dipole	moment

P Pressure

PA Power	loss	density

Prad Emitted	power	density

p Longitudinal	index

Q Charge,	distributed	charge

q Charge,	point	charge



qφ Charge	potential	energy

R Resistance

Rrad Resistance	of	radiation

Rs Surface	resistance	of	a	conductor

R Resolving	ability

r Distance,	coordinate

r Complex	reflection	coefficient

S Poynting	vector

Si Poynting	vector	of	an	incident	wave

Sr Poynting	vector	of	a	reflected	wave

Sn Normal	component	of	Poynting	vector

St Tangential	component	of	Poynting	vector

〈	S	〉 Average	over	the	period	energy	flux	density

T Absolute	temperature

Tc Critical	temperature

t Complex	transmission	coefficient

U Electric	potential	energy

ue Energy	density

V Potential	difference

Vol Volume

vgr Group	velocity

vph Phase	velocity



v Velocity	of	light	in	a	media

vr Ray	velocity

vs Velocity	of	“superconducting”	electrons

W Work

W0 Copper	pair	binding	energy

w Volume	energy	density	of	electromagnetic	waves

XC Capacitive	resistance

Z Impedance

Z0 Impedance	of	vacuum

Zs Surface	impedance	of	a	conductor

α Coefficient	of	absorption

α Attenuation	coefficient

αe Electric	polarizability

αem Electromagnetic	polarizability

αef Effective	(negative)	absorption	coefficient

β Wave	propagation	constant

β Longitudinal	wave	number

|	Γ	| Reflection	coefficient	module

γ Gyromagnetic	ratio

γ Damping	constant

Δ=∇2 Laplace	operator

Δk Specific	Faraday	rotation



δ Thickness	of	the	skin	layer

δij Kronecker’s	symbol

δκ Angles	of	dielectric	losses

δκm Angles	of	magnetic	losses

∇ Nabla,	the	vector	differential	operator

Ei Induced	electromotive	force

ε	=	κε0 Permittivity	of	material	with	relative	permittivity	κ

ε0 Permittivity	of	vacuum,	electric	constant

ζ Impedance	phase

η Spatial	dispersion

η Chirality	parameter

θ0 Angle	of	incidence

θB Brewster	angle

θcr Angle	of	total	internal	reflection

κ Relative	dielectric	permittivity	(dielectric	constant)

κ˜ Complex	permittivity	of	the	conduction	medium

κ^ Tensor	of	relative	dielectric	permittivity

κ∥ Longitudinal	dielectric	constant

κ⊥ Transverse	dielectric	constant

κm Relative	magnetic	permeability	(magnetic	constant)

κ^m Tensor	of	relative	magnetic	permeability

Λ Path	difference



λ Linear	charge	density

λ Wavelength

λcr Critical	wavelength

μ Magnetic	permeability

μ0 Magnetic	constant,	permeability	of	vacuum

μB Bohr	magneton

μm Magnetic	moment	vector

μorb Orbital	magnetic	moment

μspin Spin	moment

ρ Resistivity

ρ Volume	charge	density

ρ′ Volume	density	of	bound	charge

σ Surface	charge	density

σ Conductivity

τ Time	constant

τcoh Coherence	time

ΦB Magnetic	flux

ΦE Electric	field	flux

Φnet Net	magnetic	flux

φ Electric	potential

φ Phase	angle

φ Bragg’s	angle



χ Magnetic	susceptibility

χ Nonreciprocity	parameter

ψrp Reflected	phase	shift

ψtp Transmitted	phase	shift

Ω Solid	angle

ω Wave	angular	frequency

ωc Angular	velocity

ωC Cyclotron	frequency

ωci Ion	cyclotron	frequency

ωp Plasma	frequency



Section	I
Electric	and	Magnetic	Fields	in	Isotropic	Media



1Electrostatics
Under	certain	conditions,	macroscopic	bodies	attract	or	repel	each	other.	This	interaction
is	of	electrostatic	nature	rather	than	gravitational.	The	latter	is	negligible	compared	to	the
electric	 force.	 The	 electric	 force	 arises	 from	 the	 presence	 of	 net	 charge	 of	 bodies	 (e.g.,
charges	can	be	caused	by	friction	or	irradiation).	An	electric	charge	is	a	physical	quantity
that	 characterizes	 the	 ability	 of	 a	 body	 or	 a	 particle	 to	 participate	 in	 electromagnetic
interactions.

Charges	 can	be	 transferred	 from	one	body	 to	 another	 (e.g.,	 through	 a	 direct	 contact).
Under	 different	 conditions,	 the	 same	 body	 can	 acquire	 different	 charges.	 There	 are	 two
types	 of	 charges,	 which	 are	 referred	 to	 as	 positive	 and	 negative.	 Two	 charges	 with	 the
same	sign	repel	each	other	and	charges	with	the	opposite	polarity	attract.	This	observation
highlights	the	principal	difference	between	the	electromagnetic	and	gravitational	forces.

In	 this	 chapter,	we	 review	 the	main	 laws	of	electrostatics	 in	 vacuum	and	 in	 isotropic
media;	electrostatics	considers	properties	of	system	of	electric	charges	that	are	not	moving
including	 forces	 of	 interaction	 of	 electric	 charges	 (electrostatic	 forces)	 and	 energy	 of
electric	charges	(electrostatic	energy).

1.1				ELECTRIC	CHARGES,	ELECTRIC	CHARGE
CONSERVATION	LAW,	AND	COULOMB’S	LAW

1.	All	bodies	consist	of	atoms	that	contain	positively	charged	protons,	negatively	charged
electrons,	 and	neutrally	charged	neutrons.	Protons	 and	neutrons	 are	parts	of	 the	 atomic
nuclei;	 electrons	 are	 located	 outside	 the	 nuclei.	The	 electric	 charges	 of	 a	 proton	 and	 an
electron	 are	 equal	 in	 absolute	 value	 to	 the	 elementary	 charge	 e	 =	 1.60	 ×	 10−19	 C.	 In	 a
neutral	atom,	the	number	of	protons	in	a	nucleus	is	equal	to	the	number	of	electrons.	This
number	is	called	the	atomic	number.	Atom	can	lose	or	acquire	one	or	more	electrons.	In
these	cases,	the	neutral	atom	becomes	a	positively	or	negatively	charged	ion.

Since	any	charge	q	consists	of	a	collection	of	elementary	charges,	it	 is	multiple	of	the
elementary	charge,	that	is,

q=±ne,     n=1,2,3,…. (1.1)

Thus,	the	electric	charge	of	a	body	is	a	discrete	quantity.	Physical	quantities	that	can	have
only	 discrete	 values	 are	 named	 “quantized”	 quantities.	 The	 elementary	 charge	 e	 is	 the
quantum	(the	smallest	quantity)	of	electric	charge.

The	conservation	of	electric	charge	is	a	fundamental	law	of	nature.	This	law	states	that
the	total	charge	of	any	isolated	system	(a	system	is	electrically	isolated	if	no	charges	flow
through	its	boundaries)	does	not	change.	Thus,	the	algebraic	sum	of	all	the	charges	inside
an	isolated	system	stays	constant,	that	is,

q1+q2+q3+⋯+qn=const. (1.2)



2.	The	force	between	two	point	charges	was	investigated	by	Charles	Coulomb	in	1785.	In
his	 experiments,	 Coulomb	 measured	 the	 forces	 of	 attraction	 and	 repulsion	 between
charged	 spheres	 using	 a	 high	 precision	 torsion	 balance.	 Experiments	 performed	 by
Coulomb	allowed	him	 to	deduce	 the	 following	 law:	 the	magnitude	of	 the	 force	between
two	stationary	point	charges	is	directly	proportional	to	the	product	of	the	absolute	value	of
the	 charges	 and	 inversely	 proportional	 to	 the	 square	 of	 the	 distance	 r12	between	 them.
These	 forces	 are	 acting	 along	 the	 straight	 line	 that	 connects	 the	 two	 charges.	 Thus,	 the
expression	for	the	force	that	the	first	charge	exerts	on	the	second	charge	can	be	written	in
a	vector	form	as

F12=keq1⋅q2r123r12=keq1⋅q2r122e12, (1.3)

where	e12=r12/r12	 is	 the	unit	vector	 in	 the	direction	of	 the	 radius	vector	r12	 that	points
from	 r1	 to	 r2;	 the	 proportionality	 coefficient	 ke	 depends	 on	 the	 unit	 system.	 In	 the
International	System	of	Units	(SI),	the	unit	of	charge	is	the	coulomb	(C).	One	coulomb	is
the	charge	passing	a	conductor	cross	section	per	1	second	(s)	at	 the	current	of	1	ampere
(A).	Ampere,	the	unit	of	current,	is	a	fundamental	unit	like	the	SI	units	of	length,	time,	and
mass.	In	the	SI,	the	coefficient	ke	is	written	as

ke=14πε0=9×109 m2N/C2, (1.4)

where	ε0=(1/36π)⋅10−9=8.85×10−12 C2/N×m2	 is	 the	permittivity	of	vacuum,	meter	 (m)
is	 the	 unit	 of	 length,	 and	Newton	 (N)	 is	 the	 unit	 of	 force	 (note	 that	C2/N	×	m2	 =	 F/m,
where	farad	[F]	is	the	unit	of	capacitance	that	we	will	introduce	later).

The	Coulomb	forces	obey	Newton’s	third	law,	that	is,	F12	=	−F21	(see	Figure	1.1).	Here,
F21	is	the	force	that	the	second	charge	exerts	on	the	first	charge.

Coulomb’s	law	in	the	form	of	Equation	1.3	is	valid	for	point	charges.	It	can	be	used	in
cases	when	the	size	of	the	charged	bodies	is	much	smaller	than	the	distance	between	them
as	those	extended	charges	can	be	approximated	by	point	charges.

3.	Experiments	show	that	the	Coulomb	force	between	two	charges	is	valid	in	the	presence
of	other	charges	 in	 their	surroundings.	 In	a	system	composed	of	n	 charges,	 the	 resultant
force	Fi	that	the	rest	n	–	1	charges	exert	on	the	charge	qi	is	given	by

Fi=∑j=1,j≠inFji. (1.5)

If	a	charged	object	interacts	with	other	charged	objects,	the	resultant	force	on	it	is	given	by
the	vector	sum	of	the	forces	that	all	these	charged	bodies	exert	on	it.	Thus,	the	Coulomb
force	obeys	the	principle	of	superposition.	In	this	case,	the	superposition	principle	states
that	if	a	given	charged	object	is	interacting	with	several	charges,	then	the	resulting	force
acting	on	the	considered	object	is	equal	to	the	vector	sum	of	the	forces	that	each	individual
charge	 exerts	 on	 the	 object.	 Figure	 1.2	 illustrates	 the	 superposition	 principle.	Here,	 the
forces	Fji	with	 two	 indices	 determine	 the	 force	 that	 charge	 j	 exerts	 on	 charge	 i	 and	 the
forces	Fi	with	one	index	are	the	resulting	force	on	a	given	charge	i	from	all	other	charges.



FIGURE	1.1	Two	charges	with	 the	same	sign	repel	each	other	(upper	part)	and	charges
with	the	opposite	polarity	attract	(lower	part).

Equation	1.5	also	describes	the	electrostatic	interaction	force	of	nonpoint	charges,	that
is,	 charges	 distributed	 in	 the	 bodies	 of	 finite	 size.	 Considering	 each	 body	 as	 a	 set	 of
infinitely	small	charges	dq1	and	dq2,	one	can	define	the	force	between	them	as

dF12=kedq1⋅dq2r122e12, (1.6)

where

r12	is	the	distance	between	these	charges
e12	is	a	unit	vector	directed	from	charge	1	to	charge	2	(see	Figure	1.1)

Generally,	the	expression	for	an	infinitely	small	charge	is	given	as

dq={	ρdr3,σdA,λdl, (1.7)

where	ρ,	σ,	and	λ	are	the	volume	(C/m3),	surface	(C/m2),	and	line	(C/m)	charge	densities,
respectively.	In	the	most	general	case,	these	densities	depend	on	the	coordinates.	dr3,	dA,
and	dl	are	the	elements	of	volume,	surface,	and	length,	respectively.	To	find	the	resultant
Coulomb	 force,	 one	 has	 to	 integrate	 expression	 (1.6)	 over	 the	 volume	 (surface,	 length)
occupied	 by	 each	 of	 the	 charges.	 To	 demonstrate	 the	 application	 of	 expressions	 (1.5)
through	(1.7),	consider	the	example	in	Exercise	1.1.

FIGURE	1.2	Illustration	of	the	superposition	principle	for	Coulomb	forces.

FIGURE	1.3	Interaction	of	a	point	charge	q	with	a	charged	rod	of	length	l.



Exercise	1.1
Find	the	Coulomb	force	between	a	point	charge	q	at	the	origin	and	a	thin	charged	rod	of
length	l.	The	rod	has	a	uniformly	distributed	charge	Q,	and	it	is	oriented	along	the	radial
direction	from	the	charge	q.	The	geometric	center	of	the	rod	is	at	the	distance	a	from	the
point	charge	and	a	>	l/2.

Solution.	Consider	an	elementary	charge	dQ	=	λ	dx	on	 the	 rod,	where	 the	 linear	charge
density	 λ	 =	 Q/l	 (Figure	 1.3).	 The	 distance	 between	 dQ	 and	 q	 is	 x.	 The	 elementary
Coulomb	 force	 acting	 on	 the	 charge	 element	 dQ	 is	 oriented	 along	 the	 x-axis,	 and	 its
magnitude	is	equal	to

dF=keq⋅dQx2=keqQldxx2⋅ (1.8)

The	total	Coulomb	force	between	the	charge	q	and	the	rod	is	determined	by	summing	the
Coulomb	 forces	 between	 the	 charge	q	 and	 all	 elementary	 charges	dQ	 in	 the	 rod.	 In	 the
case	of	a	continuous	charge	distribution	along	the	rod,	the	sum	becomes	an	integral	over
the	region	occupied	by	the	charge:

F=keqQl∫a−l/2a+l/2dxx2=−keqQl1x|a−l/2a+l/2=keqQa2−l2/4⋅ (1.9)

In	 the	 case	 for	 which	 a	 ≫	 l,	 expression	 (1.9)	 for	 the	 Coulomb	 force	 becomes	 the
expression	for	the	Coulomb	force	between	two	point	charges.

1.2				ELECTRIC	FIELD	VECTOR,	PRINCIPLE	OF
SUPERPOSITION

1.	The	electric	force	between	charged	objects	is	present	without	the	objects	being	in	direct
contact.	This	can	be	described	by	the	electric	field	generated	by	any	charged	body	in	its
surroundings.	The	electric	field	E	is	the	vector	quantity,	which	is	directly	proportional	to
the	force,	F,	the	electric	field	exerts	on	a	positive	charge	q	at	a	given	point	of	space	and
inversely	proportional	to	the	charge

E=Fq⋅ (1.10)

The	direction	of	the	vector	E	at	any	point	of	space	coincides	with	the	direction	of	the	force
acting	on	a	positive	charge.	The	unit	of	the	electric	field	in	the	SI	is	N/C,	or	V/m,	as	will
be	 discussed	 later.	 Here,	 volt	 (V)	 is	 the	 unit	 of	 electric	 potential.	 Taking	 into	 account
relation	(1.3),	the	electric	field	E1	generated	by	a	point	charge	q1	can	be	written	as

E1=keq1r2er, (1.11)

where	er	 is	a	unit	vector	directed	along	vector	r	 from	the	position	of	charge	q1.	Electric
field	 lines	are	commonly	used	 to	visualize	 the	electric	 field.	These	 lines	are	drawn	with
the	following	assumptions:	(1)	the	direction	of	the	vector	E	coincides	at	any	point	with	the
direction	 of	 tangent	 to	 the	 electric	 field	 line,	 (2)	 the	 density	 of	 lines	 in	 any	 region	 is
proportional	 to	 the	magnitude	of	 the	 electric	 field	vector,	 and	 (3)	 the	 electric	 field	 lines



emerge	from	positive	charges	and	 they	sink	 into	negative	charges.	Electric	 field	 lines	of
isolated	positive	and	negative	spherically	symmetric	charges	uniformly	follow	the	radial
directions.	The	electric	field	lines	come	out	of	(into)	 the	charge	for	a	positive	(negative)
charge	as	it	is	shown	in	Figure	1.4.

2.	It	has	been	shown	earlier	that	for	a	system	of	charges	the	resultant	force	acting	on	a	test
charge	 is	 given	 by	 the	 vector	 sum	 of	 forces	 exerted	 by	 each	 separate	 charge	 on	 it.
Consequently,	 the	electric	 field	produced	by	a	system	composed	of	n	charges	at	a	given
point	is	equal	to	the	vector	sum	of	the	electric	fields	produced	at	the	same	point	by	each
charge	separately	(see	Figure	1.5):

E=∑i=1nEi. (1.12)

This	is	the	principle	of	superposition,	one	of	the	electromagnetic	theory	fundamentals.	It
allows	 calculating	 the	 electric	 field	 for	 any	 system	 of	 charges	 (either	 discretely	 or
continuously	 distributed	 in	 space).	 To	 illustrate	 the	 application	 of	 the	 principle	 of
superposition	for	a	discrete	charge	distribution,	consider	a	system	of	two	charges	equal	in
absolute	value	but	different	in	sign,	q	and	−q,	placed	at	a	fixed	distance	l	(here	q	>	0).	An
important	parameter	in	electromagnetic	theory	is	the	dipole	moment	(a	vector	quantity)

FIGURE	1.4	The	electric	field,	E,	lines	of	a	positive	charge	(a)	and	a	negative	charge	(b).

FIGURE	1.5	Illustration	of	the	superposition	principle	for	the	electric	field.

p=ql(C⋅m), (1.13)

where	l	is	the	vector	directed	from	the	negative	to	the	positive	charge	and	its	magnitude,	|	l



|=l	 (see	Figure	1.6a).	Using	 the	superposition	principle	given	by	Equation	1.12,	 one	 can
show	that	the	electric	field	on	the	dipole	axis	at	a	point	at	a	distance	b1	≫	l	(Figure	1.6b)
from	the	dipole	center	is	given	by

E1=2kepb13. (1.14)

The	 electric	 field	 along	 the	 perpendicular	 to	 the	 dipole	 axis	 held	 at	 its	 center	 at	 the
arbitrary	distance	b2	is	determined	by	the	equation

E2=−kepb23. (1.15)

Vector	E2	 is	directed	oppositely	to	E1	(Figure	1.6b)	and	under	the	condition	b2	=	b1,	 the
magnitude	of	E2	is	two	times	smaller	than	the	magnitude	of	E1.

Many	molecules	have	a	nonzero	dipole	moment.	For	example,	the	dipole	moment	of	the
water	molecule	is	p	=	6.2	×	10−30	C	⋅	m.
Consider	 n	 point	 charges	 distributed	 in	 space	 points	 with	 position	 vectors	 ri.	 In	 this

case,	the	electric	field	vector	at	a	point	with	the	position	vector	r0	can	be	expressed	as

E=ke∑i=1nr0−ri|	r0−ri	|3qi. (1.16)

In	extended	objects,	the	charge	is	continuously	distributed.	To	determine	the	electric	field
generated	by	a	 finite-size	object,	 the	object	 is	divided	 into	elements	with	volume	d(Vol)
and	charge	dQ=ρd(Vol)=ρdr3.	Note,	in	general	case,	if	ρ	depends	on	coordinates	we	have
ρ	=	ρ(r).

The	field	is	given	by	the	integral

E=ke∫(Q)r0−r|	r0−r	|3dQ=ke∫(Vol)ρ(r)r0−r|	r0−r	|3dr3. (1.17)

The	 integration	 is	 carried	 out	 over	 the	 whole	 volume,	 (Vol),	 over	 which	 the	 charge	 is
distributed.

FIGURE	1.6	Definition	of	a	dipole	(a)	and	the	electric	field	of	the	dipole	at	points	b1	and
b2	(b).



FIGURE	1.7	Electric	field	of	a	charged	ring:	contribution	from	an	element	dl	(a)	and	the
total	field	(b).

Exercise	1.2
A	uniformly	charged	ring	has	a	radius	R	and	a	total	charge	Q.	Find	the	electric	field	vector
E	along	the	ring	axis	at	a	point	on	the	normal	to	the	ring	plane	at	a	distance	b	from	the	ring
center.

Solution.	We	choose	the	coordinate	system	shown	in	Figure	1.7.	We	divide	the	ring	into
elements	of	length	dl	with	a	charge	equal	to

dQ=λdl=Q2πRdl. (1.18)

The	 vector	 dE	 generated	 by	 dQ	 has	 two	 components	 at	 the	 observation	 point	 (Figure
1.7a):	a	longitudinal	component	dE||	(along	the	z-axis)	and	a	transverse	component	dE⊥
(perpendicular	 to	 the	 z-axis).	 Due	 to	 the	 symmetry	 of	 the	 charge	 distribution,	 the	 total
transverse	 component	 of	 the	 electric	 field	 is	 E⊥=0	 at	 any	 point	 on	 the	 z-axis	 (Figure
1.7b).

The	longitudinal	component	is	determined	by	the	following	integral:

E||=E||ez=ez∫dE sin α=ezke∫02πRQdl2πRr2br=ezkeQbr3=ezkeQb(R2+b2)3/2. (1.19)

From	Equation	 1.19,	 the	 electric	 field	 vanishes	 at	 the	 ring	 center	 (at	 b	 =	 0).	 At	 short
distances	 from	 the	 ring	 center	 (i.e.,	 for	 b	≪	R),	 the	 field	 is	 E||≈keQb/R3,	 that	 is,	 it	 is
linearly	 dependent	 on	b.	At	 large	 distances	 from	 the	 ring	 center	 (for	b	≫	R),	 the	 field
becomes	 the	 Coulomb	 field	 of	 a	 point	 charge:	 E||≈keQ/b2.	 The	 electric	 field	 has	 the
maximum	magnitude	E||max=2keQ/33R2	at	a	distance	b=±R/2.

1.3				ELECTRIC	POTENTIAL	AND	ELECTRIC	FIELD
ENERGY

1.	The	elementary	work	dW	that	is	done	by	the	electric	field	E	in	moving	a	charge	q	by	a
displacement	dl	under	the	influence	of	the	force	Fe=qE	is	equal	to

dW=Fe⋅dl=qEdl cosα, (1.20)

where	α	 is	 the	 angle	between	 the	 electric	 field	vector	E	 and	 the	direction	of	 the	charge



motion.	 This	 equation	 can	 be	 used	 to	 find	 the	 work	 performed	 by	 the	 electric	 field	 in
moving	charge	q	from	point	1	to	point	2	in	the	field	generated	by	another	stationary	charge
Q.	Since	the	electric	field	of	a	point	charge	is	E=(keQ/r2)er	and	erdl=dl cosα=dr	(Figure
1.8),	the	total	work	done	by	the	electric	force	along	the	whole	path	is

W12=∫dW=q∫E⋅dl=keqQ∫r1r2drr2=−keqQ1r|r1r2=keqQ(1r1−1r2). (1.21)

From	it	follows	that	the	work	of	the	electrostatic	field	W12	does	not	depend	on	the	shape
of	 the	path	 that	 the	charge	q	 follows.	This	work	depends	on	 the	difference	between	 the
initial,	r1,	and	final,	r2,	positions	of	 the	charge	q.	 In	such	a	field,	 the	work	performed	to
move	the	charge	q	along	any	closed	contour	is	equal	to	zero,	that	is,

q∮E⋅dl=0. (1.22)

The	field	is	called	a	conservative	field	if	the	work	along	a	closed	contour	is	equal	to	zero;
thus,	 the	 electrostatic	 field	 is	 the	 conservative	 field.	Therefore,	 the	quantities	of	 electric
potential	 and	 electric	 potential	 energy	 can	 be	 introduced	 for	 the	 electrostatic	 field	 and
charge	in	this	field.

The	work	W12	done	by	the	electric	field	in	moving	a	charge	q	is	given	by	the	difference
between	the	potential	energies	at	the	beginning	and	at	the	end	of	the	path,	that	is,

W12=keqQ(1r1−1r2)=q(keQr1−keQr2)=q(φ1−φ2)=U1−U2. (1.23)

Here,	we	have	introduced	the	electric	potential	φ	of	the	charge	Q:φ	=	keQ/r.	The	electric
potential	is	equal	to	the	electric	potential	energy	U	of	a	probe	charge	q	at	a	given	point	of
the	field	divided	by	the	value	of	this	charge:	φ=U/q.	The	electric	potential	energy	can	be
always	defined	within	an	arbitrary	constant	(only	the	difference	of	the	potential	energies
has	 physical	 meaning).	 Therefore,	 it	 is	 convenient	 to	 choose	 the	 potential	 energy	 of	 a
charge	at	infinity	to	be	zero.	If	r2	→	∞,	we	have

W1∞=qφ1=U1=keqQr1. (1.24)

This	 equation	 determines	 the	work	 performed	 by	 the	 electric	 field	 in	moving	 charge	 q
from	point	r1	to	infinity.	The	work	is	positive	if	both	charges	are	of	the	same	sign	as	the
potential	energy	U∞	of	the	charge	q	equals	zero	when	charge	q	 is	at	 the	infinite	distance
from	the	charge	Q.	It	is	worth	noting	here	that	if	we	bring	charge	q	from	infinity	to	point
r1	 we	 need	 to	 perform	work	 against	 the	 electric	 fields,	 that	 is,	W∞1	 is	 negative	 if	 both
charges	are	of	the	same	sign:	W∞1	=	−	W1∞.



FIGURE	1.8	Work	done	to	move	a	charge	q	from	point	1	to	point	2	in	the	field	of	charge
Q.

To	conclude,	the	potential	energy	of	interaction	between	charges	q	and	Q	at	a	distance	r
is	equal	to

U=qφ=keqQr, (1.25)

where	the	electric	potential	of	a	point	charge	Q	at	a	distance	r	from	that	charge	is	φ=keQ/r.
The	unit	of	electric	potential	in	the	SI	is	called	volt	(V).

Exercise	1.3
Find	the	electric	potential	of	an	electric	dipole	of	dipole	moment	p	at	a	point	A,	which	is
located	at	a	distance	r−	and	r+	from	the	charges	−q	and	+q	that	constitute	the	dipole	shown
in	 Figure	 1.9	 (here	 q	 >	 0).	 Consider	 the	 case	 when	 the	 distances	 r−	 and	 r+	 are	 much
greater	than	the	dipole	length	l,	that	is,	r−,r+≫1.

Solution.	 According	 to	 the	 superposition	 principle,	 the	 electric	 potential	 of	 an	 electric
dipole	at	some	point	is	equal	to	the	sum	of	the	potentials	of	the	two	point	charges:

φdip=φ−+φ+=−keqr−+keqr+=keq(r−−r+r−r+). (1.26)

As	the	distances	r−	and	r+	are	much	greater	than	the	dipole	length	l,	we	get	using	the	cos
relation	for	two	triangulars	in	Figure	1.9	and	taking	into	account	that	cos(π−α)=−cos α

r∓2=r2+l244±lr cos α≃r2±lr cos α. (1.27)

Using	Taylor	series	(1+x≃1+x/2 for x≪1),	one	can	get	from	Equation	1.27

r∓≃r±l cos α2  and	 r−−r+=l cos α,  r−r+≈r2.



FIGURE	1.9	Electric	potential	of	a	dipole	at	point	A.

Introducing	 these	 values	 into	 Equation	 1.26,	 we	 have	 the	 following	 expression	 for	 the
dipole	potential:

φdip=keql cos αr2=keql⋅rr3. (1.28)

We	note	 that	 the	dipole	potential	decreases	 faster	with	 the	distance	 (φdip~1/r2)	 than	 the
potential	of	a	point	charge	(φpoint~1/r).

2.	The	equipotential	surface	is	a	surface	around	a	charge	or	a	system	of	charges	where	the
electric	potential	 is	 the	same,	that	 is,	φ	=	const	on	the	equipotential	surface.	If	we	move
charge	q	 along	 the	 equipotential	 surface,	 the	work	 against	 the	 electrostatic	 field	 equals
zero	(see	Equation	1.23).	The	same	follows	from	Equation	1.21	because	E	perpendicular
to	dl	 at	 each	 point	 of	 the	 surface	 φ	 =	 const.	We	will	 discuss	 later	 in	more	 details	 (see
Figure	1.13)	the	mutual	orientation	of	electric	field	E	and	equipotential	surfaces.

Let	the	surface	potential	of	a	conductor	be	φ.	The	total	charge	q	of	a	conductor	 is	 the
sum	of	elementary	charges	dq.	Then,	the	potential	energy	of	a	charged	conductor	equals

Ue=12∫φdq=12φ∫dq=12φq. (1.29)

Note	that	in	Equations	1.23	and	1.24,	the	energy	of	charge	q	 is	calculated	in	the	external
potential	φ,	but	in	Equation	1.29,	the	potential	φ	is	due	to	charge	q	of	the	conductor,	and
Equation	1.29	has	the	factor	½	to	avoid	the	double	counting	of	contribution	of	charge	q	to
the	energy.	The	charge	and	potential	energy	of	a	conductor	are	proportional	to	each	other:

φ=qC,  q=Cφ, (1.30)

where	 the	 coefficient	 C	 is	 an	 important	 characteristic	 of	 a	 conductor	 defined	 as	 the
capacitance	 of	 a	 conductor.	 Taking	 into	 account	 these	 relations,	 the	 expression	 for	 the
energy	of	a	charged	conductor	is	given	as

Ue=12φq=Cφ22=q22C. (1.31)

We	 introduced	 the	 capacitance	of	 a	 conductor	 first,	 but	more	often	 the	 capacitance	of	 a
capacitor	 is	 a	 starting	 point.	A	 capacitor	 is	 conventionally	 defined	 as	 a	 system	 of	 two
parallel	metal	plates	separated	by	a	dielectric.	A	charged	capacitor	has	stored	energy	that	is
determined	by	the	potential	difference	V	=	Δφ	between	the	plates	and	by	the	charge	q	on
the	capacitor	plates:



Uc=Vq2=CV22=q22C. (1.32)

Note	that	for	a	parallel	plate	capacitor,	one	plate	has	the	charge	q	and	the	second	plate	has
the	 charge	 −q.	 Capacitance	 of	 a	 parallel	 plate	 capacitor	 can	 be	 calculated	 using	 the
following	equation:

C=ε0Ad,

where

A	and	d	are	the	area	of	plates	and	their	separation,	respectively
ε0	is	the	permittivity	of	vacuum	between	the	plates

If	 it	will	 be	 a	 dielectric	 between	 the	 plates,	 then	 as	we	discuss	 later	 in	Section	 1.7,	 the
permittivity	 of	 vacuum	 should	 be	 replaced	 by	 the	 permittivity	 of	 the	 dielectric,	 ε.	 The
permittivity	of	a	dielectric	will	be	introduced	and	discussed	in	details	in	Section	1.7.

The	energy	of	a	charged	capacitor	is	stored	in	the	space	occupied	by	the	electric	field	in
the	 gap	 between	 the	 plates.	Let	 us	 illustrate	 this	 for	 a	 parallel	 plate	 capacitor	 using	 the
earlier	equation	for	the	capacitance.	Since	the	potential	difference	and	electric	field	in	the
parallel	plate	capacitor	are	related	as	E	=	V/d,	we	have

Uc=CV22=CE2d22=ε0E2Ad2=ε0E22Vol, (1.33)

where	Vol	=	Ad	is	the	volume	of	a	gap	between	plates	where	the	field	is	localized.	If	the
field	is	uniform,	its	energy	is	distributed	in	space	with	the	constant	volume	density:

ue=UcVol=ε0E22. (1.34)

The	unit	of	the	energy	density	is	J/m3.	For	a	nonuniform	field	(e.g.,	point	charge	field,	the
field	between	plates	of	spherical	and	cylindrical	capacitor),	the	energy	volume	density	is	a
function	of	coordinates—u	(x,y,z).	In	this	case,	to	determine	the	energy	of	the	electric	field
localized	in	volume	(Vol),	one	has	to	calculate	the	following	integral:

Ue=∫Volue(x,y,z)dr3=ε02∫VolE2(x,y,z)dr3. (1.35)

It	is	necessary	to	stress	that	this	defines	the	energy	inside	of	the	volume	of	integration;	for
the	 parallel	 plate	 capacitor,	 the	 electric	 field	 equals	 zero	 outside	 of	 the	 capacitor,	 so	 all
energy	is	stored	between	the	plates	of	the	capacitor.

Exercise	1.4
Consider	 a	metal	 sphere	with	 a	 radius	R,	 charged	with	 a	 total	 charge	Q.	Determine	 the
energy	of	the	electric	field	inside	and	outside	the	sphere	and	the	capacitance	of	the	sphere.

Solution.	The	entire	charge	of	the	metal	sphere	is	located	at	the	surface	of	the	sphere	(r	=
R)	and	the	charge	inside	is	equal	to	zero:	Q(in)	=	0.	Outside	the	sphere,	the	field	is	equal	to
the	field	of	the	point	charge	Q	placed	at	the	sphere	center.	Inside	the	sphere,	the	field	at	a
point	located	at	a	distance	r	from	its	center	is	the	field	generated	by	a	point	charge	Q(in)	=



0	inside	of	the	sphere	of	radius	r,	r	<	R.	As	Q(in)	equals	zero,	the	electric	field	is	also	equal
to	zero.	So	we	have

E(r)={	keQr2for r≥R,0for r<R. (1.36)

Figure	 1.10	 shows	 the	 distribution	 of	 the	 electric	 field	 given	 by	 this	 relation.	 Let	 us
introduce	this	expression	into	the	relation	(1.34)	for	the	energy	density	of	the	electric	field
and	take	into	account	Equation	1.4:

ue(r)=keQ28π{	1r4for r≥R,0for r<R. (1.37)

FIGURE	1.10	Electric	field	of	a	uniformly	charged	metal	sphere.

Using	Equations	1.35	and	1.37,	we	calculate	the	electric	field	energy	U	outside	the	sphere
as	 the	 energy	 inside	 the	 sphere	 is	 equal	 to	 zero	 (Equation	 1.37).	 Given	 the	 spherical
symmetry	of	the	problem,	the	volume	element	d(Vol)=4πr2dr.	The	following	relations	give
the	energy	and	the	capacitance;	capacitance	is	calculated	using	Equation	1.31:

U=keQ28π∫R∞4πr2r4dr=keQ22R,C=Q22U=Rke=4πε0R. (1.38)

The	 capacitance	 of	 a	metallic	 sphere	 is	 equal	 to	 its	 radius	R	 multiplied	 by	 a	 universal
constant,	4πε0.

1.4				GAUSS’S	LAW	FOR	THE	ELECTRIC	FIELD
Consider	a	 small	 surface	ΔA	 penetrated	by	 electric	 field	 lines	 generated	by	 a	 system	of
charges.	The	electric	field	line	direction	makes	an	angle	α	with	the	outward	normal	n	 to
this	surface	(n	 is	a	unit	vector).	Assuming	 that	 the	magnitude	of	E	 and	 its	direction	are
approximately	 constant	 over	 surface	 ΔA,	 one	 can	 define	 the	 electric	 flux	 through	 this
surface	as	(Figure	1.11)

ΔΦE=E⋅nΔA=EΔA cos α. (1.39)

For	an	elementary	vector	surface	dA=ndA,	this	relation	is	given	as	dΦE=E⋅dA.



FIGURE	1.11	The	calculation	of	flux	of	the	electric	field	E	through	surface	A.

The	total	flux	of	the	electric	field	through	surface	A	is	calculated	as	an	integral	over	the
whole	surface

ΦE=∫(A)E⋅dA. (1.40)

Consider	 a	 positive	 point	 charge	 q	 inside	 an	 arbitrary	 closed	 surface	 A.	 A	 component
dAE=dA cos α	of	 a	 surface	 element	dA	 in	 the	direction	of	 vector	E	 is	 considered	 as	 an
element	of	a	spherical	surface	with	radius	r	and	a	charge	q	in	its	center.	dAE/r2	is	equal	to
the	elementary	solid	angle	dΩ	that	subtends	element	dA.	Taking	into	account	the	relation
for	a	point	charge	field,	Equation	1.39	becomes

dΦE=qdΩ4πε0. (1.41)

Integration	over	the	whole	surface	surrounding	the	charge,	that	is,	within	the	solid	angle
from	0	to	4π,	gives

ΦE=4πkeq=qε0. (1.42)

This	 result	 is	valid	 for	a	closed	surface	of	any	shape	and	arbitrary	charge	system	 inside
this	surface.	Taking	into	consideration	the	principle	of	superposition,	ΦE	can	be	written	as

ΦE=∮(A)E⋅dA=∮(A)∑jEj⋅dA=∑j∮(A)Ej⋅dA=4πke∑jqj=1ε0∑jqj. (1.43)

Thus,	 the	 flux	 of	 the	 electric	 field	 through	 a	 closed	 surface	 of	 arbitrary	 shape	 is
proportional	 to	 the	 total	 charge	 within	 this	 surface.	 The	 proportionality	 coefficient	 is
4πke=1/ε0.	Equation	1.43	is	known	as	Gauss’s	law	for	the	electric	field.

If	the	charge	is	distributed	with	a	volume	density	ρ=dq/d(Vol),	the	total	charge	inside	a
closed	surface	A	is	equal	to

Q(in)=∑	qi=∫Volρdr3 (1.44)

and	Gauss’s	law	is	expressed	as

ΦE=∮AE⋅dA=4πke∫Volρdr3=1ε0∫Volρdr3=Q(in)ε0. (1.45)



Note	that	despite	the	dependence	of	the	electric	field	E	at	any	point	on	the	location	of	all
charges	in	space,	the	flux	of	this	vector	through	an	arbitrary	closed	surface	depends	only
on	the	charges	inside	the	surface.

FIGURE	1.12	Electric	field	in	the	vicinity	of	a	charged	straight	line.

Exercise	1.5
Using	the	integral	form	of	Gauss’s	law,	find	the	electric	field	in	the	vicinity	of	a	charged
straight	line	of	infinite	length.	The	linear	charge	density	is	uniform	and	equal	to	λ.

Solution.	 Choose	 a	 Gaussian	 surface	 in	 the	 form	 of	 a	 cylinder	 of	 length	 l	 whose	 axis
coincides	with	the	line	of	charge	(Figure	1.12).

The	 electric	 field	 lines	generated	by	 the	 charge	 line	 are	perpendicular	 to	 the	 cylinder
curved	surface.	Since	the	angle	between	E	and	the	normal	to	the	cylinder	bases	is	90°,	the
flux	 through	 both	 cylinder	 bases	 is	 zero.	 The	 total	 flux	 through	 the	 cylinder	 surface	 is
ΦE=E2πrl,	 where	 r	 is	 the	 cylinder	 radius.	 The	 charge	 inside	 the	 cylinder	 is	 q	 =	 λ	 l.
According	to	Gauss’s	law	(Equation	1.42),

ΦE=E2πrl=λlε0.

Consequently,	 the	 magnitude	 of	 the	 electric	 field	 generated	 by	 an	 infinite	 uniformly
charged	line	at	a	distance	of	r	is

E=λ2πrε0.

1.5				RELATION	BETWEEN	THE	ELECTRIC	FIELD
AND	THE	ELECTRIC	POTENTIAL

l.	The	elementary	work	done	by	the	electric	field	in	moving	charge	q	by	a	distance	dl	as	it
follows	from	Equations	1.20	and	1.23	is	given	by

dW=dW12=qE⋅dl=q(φ1−φ2)=−qdφ, (1.46)

where	 φ	 is	 the	 electric	 potential	 and	 dφ = φ2−φ1.	 This	 expression	 relates	 the	 electric
potential	φ	and	the	electric	field	vector:

E⋅dl=Exdx+Eydy+Ezdz=−dφ. (1.47)

The	following	three	scalar	equations	are	obtained	from	this	equation:

Ex=−∂φ∂x,  Ey=−∂φ∂y,   Ez=−∂φ∂z. (1.48)



Thus,	vector	E=iEx+jEy+kEz	is	given	by

E=−(i∂φ∂x+j∂φ∂y+k∂φ∂z). (1.49)

Here,	 the	 vectors	 i,	 j,	 k	 are	 unit	 vectors	 along	 the	 Cartesian	 coordinate	 axes,	 and	 the
expression	in	brackets	is	the	potential	gradient,	or	grad	φ:

grad φ=∇φ=i∂φ∂x+j∂φ∂y+k∂φ∂z, (1.50)

where	 symbol	Δ	 (nabla)	 is	 introduced	 to	 denote	 the	vector	 differential	 operator	 referred
often	to	as	“del:”

∇=i∂∂x+j∂∂y+k∂∂z. (1.51)

Thus,	 the	 potential	 gradient	 is	 given	 by	 the	 product	 of	Δ	 “vector”	with	 components	 (∂/
∂x,∂/∂y,∂/∂z)	and	scalar	function	φ.	Then,	grad	φ	is	a	vector	quantity.	The	relation	between
the	electric	field	and	the	electric	potential	is	given	by	the	expression

E=−grad φ  or		E=−∇φ. (1.52)

This	 has	 the	 following	meaning.	Consider	 the	 equipotential	 surfaces	with	 the	 potentials
φ1<φ2<φ3.	 According	 to	 the	 definition,	 the	 direction	 of	 vector	 grad	 φ	 is	 along	 the
direction	 of	 the	 steepest	 change	 of	 φ.	 This	 direction	 coincides	 with	 the	 direction
perpendicular	 to	 the	 equipotential	 surfaces	 from	φ1	 to	 φ3.	 According	 to	 Equation	 1.52,
vector	E	at	the	same	point	is	oppositely	directed.

Generalizing	this	result,	one	can	say	that	at	all	points	of	a	continuous	surface	orthogonal
to	the	electric	field	lines,	the	electric	field	potential	is	the	same	(equipotential	surface).

Equipotential	surfaces	are	commonly	employed	to	visualize	the	electric	field.	Generally,
they	 are	 drawn	 so	 that	 the	 potential	 difference	 between	 any	 two	 surfaces	 is	 the	 same.
Figure	1.13	 shows	 a	 2D	 picture	 of	 electric	 field.	 Solid	 lines	 are	 electric	 field	 lines	 and
equipotential	surfaces	are	dashed	lines.

2.	According	to	Gauss’s	mathematical	theorem,	the	integral	over	a	closed	surface	can	be
expressed	as	a	volume	integral:

∮AE⋅dA=∫Voldiv	Edr3, (1.53)

FIGURE	 1.13	 Electric	 field	 is	 a	 gradient	 of	 the	 electric	 potential	 and	 equipotential



surfaces.

where	the	scalar	div	E	(called	the	“divergence	of	E”)	is	defined	as

div	E=∂Ex∂x+∂Ey∂y+∂Ez∂z=∇⋅E. (1.54)

Since	 Δ	 ⋅	E	 could	 be	 considered	 as	 a	 scalar	 product	 of	 “vector”	 Δ	 and	 vector	E,	 this
quantity	 is	 a	 scalar.	 The	 left-hand	 side	 of	Equation	1.53	 determines	 the	 flux	ΦE	 over	 a
closed	 surface	 that	 in	 accordance	with	Gauss’s	 law	 (Equation	1.45)	 is	 equal	 to	 the	 total
charge	inside	the	closed	surface	(Equation	1.44).	Taking	these	into	consideration,	Equation
1.53	can	be	written	as	follows:

∫Voldiv	Edr3=1ε0∫Volρdr3. (1.55)

As	 the	 integrals	 over	 all	 ranges	 are	 equal,	 the	 integrands	 must	 be	 equal	 as	 well.
Consequently,	Gauss’s	law	for	the	vector	of	electric	field	can	be	written	in	the	following
differential	form:

div	E=ρε0. (1.56)

Similar	to	Equation	1.45,	this	equation	is	one	(out	of	four)	of	Maxwell’s	equations.	Such	a
field	is	commonly	referred	to	as	a	conservative	or	potential	field,	since	a	scalar	potential
can	be	introduced	to	describe	it.	Therefore,	the	curl	of	vector	E	is	zero,	that	is,

∮LE⋅dl=0,  ∇×E=0. (1.57)

Here,	 the	 vector	 product	 of	 Δ	 and	 E,	∇	 ×	E,	 denotes	 the	 curl	 of	 vector	 E,	 and	 it	 is
calculated	in	Cartesian	coordinates	in	accordance	with	the	following	rule:

∇×E=|	ijk∇x∇y∇zExEyEz	|=i(∇yEz−∇zEy)+j(∇zEx−∇xEz)+k(∇xEy
−∇yEx)                                                =i(∂Ez∂y−∂Ey∂z)+j(∂Ex∂z−∂Ez∂x)+k(∂Ey∂x−∂Ex∂y).

Exercise	1.6
Find	the	electric	field	vector	for	the	case	when	the	electric	potential	is	φ(r)=α/r.

Solution.	According	to	Equation	1.49,	we	can	write

E=−grad φ=−(i∂φ∂x+j∂φ∂y+k∂φ∂z),

where

∂φ∂x=∂φ∂r∂r∂x
∂φ∂y=∂φ∂r∂r∂y
∂φ∂z=∂φ∂r∂r∂z

Since	r=x2+y2+z2,	we	have	∂r∂x=2x2x2+y2+z2=xr,  ∂r∂y=yr,   ∂r∂z=zr.

As	φ(r)=αr,	then	∂φ∂r=∂∂r(αr)=−αr2.	Thus,

E=−∂φ∂r(ix+jy+kz)r=−∂φ∂rrr=αrr3.



1.6				POISSON’S	AND	LAPLACE	EQUATIONS
Equation	1.52	relates	 the	electric	potential	and	 the	electric	 field.	Let	us	 find	 the	relation
between	 the	 electric	 potential	 and	 the	 charge	 density.	For	 this,	we	 apply	 the	 divergence
operator	to	both	sides	of	Equation	1.52:

divE=−div(grad φ). (1.58)

According	to	the	vector	analysis	rules,

div(grad φ)=∇⋅(∇φ)=∇2φ=(∂2∂x2+∂2∂y2+∂2∂z2)φ=∂2φ∂x2+∂2φ∂y2+∂2φ∂z2. (1.59)

The	differential	operator

∇2=∂2∂x2+∂2∂y2+∂2∂z2 (1.60)

is	 widely	 employed	 in	 different	 branches	 of	 physics	 and	 is	 referred	 to	 as	 the	 Laplace
operator.	Taking	into	account	Equation	1.56,	we	have	the	following	differential	equation:

∇2φ=−ρε0    or    ∂2φ∂x2+∂2φ∂y2+∂2φ∂z2=−ρε0 , (1.61)

known	as	Poisson’s	equation.	For	space	regions	free	of	electric	charges,	that	is,	if	ρ(x,	y,	z)
=	0,	this	equation	has	the	following	form:

∇2φ=0    or  ∂2φ∂x2+∂2φ∂y2+∂2φ∂z2=0. (1.62)

This	particular	form	of	Poisson’s	equation	is	called	Laplace	equation.	Poisson’s	equation
allows	 calculating	 the	 electric	 potential	 of	 a	 field	 generated	 by	 volume	 charges,	 if	 their
distribution	is	known	for	this	volume.	This	equation	has	to	be	solved	with	given	boundary
conditions.

Let	us	consider	an	example	of	solution	of	Poisson’s	equation	 that	 is	 important	 for	 the
theory	of	electronic	tubes.	It	is	known	that	metals	heated	up	to	high	enough	temperatures
emit	 electrons	 from	 their	 surface	 (thermoelectrons)	 into	 the	 surrounding	 space.	 If	 a
potential	 difference	 is	 applied	 between	 two	 metal	 electrodes,	 the	 cathode	 (a	 negative
electrode	 that	 is	 heated	 to	 emit	 electrons)	 and	 the	 anode	 (a	 positive	 electrode),	 electron
flows	from	cathode	to	anode.	This	flux	is	equivalent	to	an	electric	current,	which	is	called
thermionic	current.

Exercise	1.7
Find	the	potential	distribution	between	two	flat	electrodes	(cathode	and	anode)	in	vacuum
for	 the	 case	 of	 thermionic	 emission	 from	one	of	 them	 (cathode).	Assume	 for	 simplicity
that	 the	 distance	 between	 the	 cathode	 and	 the	 anode	 is	 smaller	 than	 the	 size	 of	 those
electrodes	and	that	those	emitted	by	the	cathode	thermoelectrons	have	zero	initial	velocity,
that	 is,	v	 (0)	=	0.	The	schematic	of	 the	 thermionic	emission	 in	a	diode	 tube	 is	shown	in
Figure	1.14.



Solution.	Let	us	choose	the	Cartesian	coordinates	so	that	their	origin	is	at	the	cathode	and
z-axis	is	perpendicular	to	the	plane	of	electrodes	and	it	is	directed	toward	an	anode	(z-axis
is	 not	 shown	 in	 Figure	 1.14).	 Due	 to	 potential	 difference	 between	 the	 anode	 and	 the
cathode,	the	thermoelectrons	generated	at	the	cathode	flow	toward	the	anode	resulting	in	a
current	 between	 the	 cathode	 and	 the	 anode.	 The	 electric	 force	 performs	 work	 on	 the
electrons.	This	work	increases	the	kinetic	energy	of	each	electron:

mv2(z)2=eφ(z), (1.63)

where

m	is	the	electron	mass
v(z)	is	the	electron	velocity	at	a	distance	z	from	the	cathode
φ(z)	is	the	potential	at	z

FIGURE	1.14	Schematic	of	a	thermoelectric	emission	experiment	with	a	diode	tube.

For	 the	 geometry	 of	 the	 electrodes,	 the	 equipotential	 surfaces	 are	 planes	 parallel	 to	 the
electrodes.	Therefore,	in	the	space	between	them,	the	partial	derivatives

∂φ∂x=∂φ∂y=0

and	Poisson’s	equation	takes	the	form

d2φdz2=−ρ(z)ε0. (1.64)

Here,	 ρ	 is	 the	 charge	 volume	 density,	 and	 this	 quantity	 is	 related	 to	 the	 density	 of
electrons,	n(z),	at	each	point	of	space	between	electrodes	as	follows:	ρ(z)=−en(z),	where	e
is	the	absolute	value	of	the	electron	charge.

We	 substitute	 in	 Equation	 1.64	 the	 charge	 density	 by	 the	 electric	 current	 density
j=en(z)v(z),	which	does	not	vary	with	time	in	the	stationary	state	and	independent	of	the
coordinate	 z	 (since	 an	 equal	 number	 of	 electrons	 pass	 per	 unit	 time	 through	 any	 plane



parallel	to	electrodes):

d2φdz2=−ρ(z)ε0=en(z)ε0=jε0v(z). (1.65)

From	Equation	1.63,	one	can	express	 the	velocity	 through	 the	potential	 and	 introduce	 it
into	Equation	1.65.	Since	v=2eφ/m,	we	have

d2φdz2=jε0m2eφ=jε0m2eφ−1/2=A2φ−1/2. (1.66)

We	will	solve	this	equation	with	the	boundary	conditions,	under	which	for	z	=	0	equalities

φ(0)=0,   dφdz|z=0=0

are	satisfied,	that	is,	at	z	=	0,	both	the	potential	and	the	electric	field	are	equal	to	zero.	To
solve	Equation	1.66,	let	us	multiply	its	right-	and	left-hand	parts	by	dφ/dz:

dφdzd2φdz2=A2φ−1/2dφdz.

The	earlier	equation	can	be	rewritten	as

12ddz(dφdz)2=2A2ddzφ1/2,         (dφdz)2=4A2φ1/2.

Taking	the	square	root	of	the	last	equation,	we	obtain	the	first-order	differential	equation:

dφdz=2Aφ1/4,  dφφ1/4=2Adz. (1.67)

By	integrating	this,	we	obtain	the	dependence	of	the	potential	on	z:

43φ3/4=2Az,   φ(z)=(32Az)4/3. (1.68)

Thus,	for	these	conditions,	the	potential	increases	proportionally	to	z4/3.

1.7				ELECTRIC	FIELD	IN	A	MEDIUM,	ELECTRIC
DISPLACEMENT

1.	The	electric	field	can	exist	not	only	in	vacuum	but	in	matter	as	well.	However,	there	is	a
crucial	difference	between	the	field	distribution	inside	a	conductor	and	in	a	dielectric.	In	a
conductor,	 there	 are	 free	 electric	 charges	 (electrons)	 that	 move	 due	 to	 electric	 forces.
When	 a	 conductor	 is	 placed	 in	 an	 electric	 field,	 uncompensated	 positive	 and	 negative
charges	appear	at	 the	conductor	 surface	due	 to	 free	charge	 redistribution.	These	charges
are	 referred	 to	 as	 induced	 charges.	 Induced	 charges	 produce	 their	 own	 field	 E′	 that
compensates	exactly	 the	external	 field	E0	 resulting	 in	a	zero	net	electric	 field	 inside	 the
conductor,	that	is,	E	=	E0	+	E′	=	0.	Here,	the	potentials	at	all	points	inside	the	conductor
are	the	same	and	equal	to	the	potential	at	the	conductor	surface.

In	a	dielectric,	charges	are	bound	on	molecules	(and/or	atoms),	and	 thus,	 they	are	not
free	 to	 move	 under	 the	 influence	 of	 electric	 forces.	 When	 a	 dielectric	 is	 placed	 in	 an
external	 electric	 field,	 extra	 uncompensated	 bound	 charges	 appear	 on	 the	 dielectric
surface.	 This	 process	 is	 called	 polarization	 of	 the	 dielectric.	Bound	 charges	 produce	 an
electric	 field	E′	 inside	 the	 dielectric	 that	 is	 oppositely	 directed	 to	 the	 external	 field	E0.



Thus,	the	total	electric	field	inside	the	dielectric	is	nonzero,	and	it	is	lower	in	magnitude
than	the	external	field:

E=E0+E′≠0,       |	E	|<|	E0	|. (1.69)

The	ratio	of	the	external	electric	field	magnitude	to	the	magnitude	of	total	field	inside	an
isotropic	 dielectric	 is	 referred	 to	 as	 the	 relative	 dielectric	 permittivity	 (or	 dielectric
constant)	of	the	material:

κ=E0E. (1.70)

If	an	isotropic	dielectric	with	dielectric	permittivity	ε	=	κε0	contains	a	point	charge	q,	the
electric	field	generated	by	 this	charge	and	 the	potential	are	κ	 times	smaller	compared	 to
the	corresponding	values	in	vacuum:

E=keqκr2er,     φ = keqκr. (1.71)

2.	The	presence	of	bound	charges	in	a	dielectric	is	reflected	in	the	formulation	of	Gauss’s
law.	If	the	volume	density	of	free	charges	ρ	and	that	of	bound	charges	ρ′	are	introduced,
Gauss’s	law	for	the	vector	E	in	an	integral	form	has	the	following	form:

∮E⋅dA=4πke∫(Vol)(ρ+ρ′)dr3=1ε0∫(Vol)(ρ+ρ′)dr3=1ε0(q+q′). (1.72)

The	differential	form	of	Gauss’s	law	is

div E=ρ+ρ′ε0. (1.73)

The	density	of	 bound	charges	ρ′	 is	 related	 to	 the	polarization	via	 the	 equation	ρ′=−∇⋅P.
Here,	the	polarization	vector	P	is	equal	to	the	total	dipole	moment	of	a	unit	volume	of	a
dielectric,	that	is,

P=1Vol∑jpj(C/m2). (1.74)

The	polarization	vector	is	proportional	to	the	electric	field	vector,	that	is,

P=ε0χE, (1.75)

where	the	dimensionless	parameter	χ	is	the	dielectric	susceptibility	of	a	substance,	and	it	is
related	 to	 the	dielectric	permittivity	as	follows:	κ	=	1	+	χ.	Taking	 into	account	Equation
1.75	and	the	earlier	relation	ρ′=−∇⋅P,,	Equation	1.73	transforms	into

div (ε0E+P)=ρ. (1.76)

Let	us	introduce	the	electric	displacement	vector

D=ε0E+P, (1.77)



which	takes	into	account	the	polarization	of	a	substance	and	is	given	in	C/m2.	Taking	into
consideration	Equation	1.75,	this	relation	can	be	given	as

D=ε0E+ε0χE=ε0(1+χ)E=ε0κE. (1.78)

Consequently,	Equation	1.76	is	written	as

div D=ρ. (1.79)

An	integral	form	of	this	equation	is	expressed	as	follows:

∮D⋅dA=∫(Vol)ρdr3=q. (1.80)

Equations	 1.79	 and	 1.80	 express	 Gauss’s	 law	 in	 the	 presence	 of	 matter.	 According	 to
Equations	1.79	and	1.80,	the	field	defined	by	D	is	associated	with	the	free	charges,	where
its	 displacement	 lines	 begin	 and	 end.	 As	 it	 follows	 from	 Equations	 1.72	 and	 1.73,	 the
electric	field	E	is	determined	by	free	and	bound	charges,	that	is,	by	the	total	charge.

Taking	 into	 consideration	 the	 relation	 between	 vectors	E	 and	D,	 the	 volume	 energy
density	of	electric	field	of	Equation	1.34	can	be	given	by	one	of	the	following	expressions:

ue=κε0E22=D22κε0=E⋅D2. (1.81)

This	should	be	used	instead	of	Equation	1.34	if	the	dielectric	with	the	permittivity	ε	=	ε0κ
is	placed	in	the	space	between	the	plates	of	a	capacitor.	The	energy	stored	in	a	capacitor	is
proportional	to	the	relative	dielectric	permittivity	of	a	dielectric.

Exercise	1.8
A	 spherical	 insulating	 glass	 shell	 is	 uniformly	 charged	 with	 volume	 density	 ρ	 =	 100
nC/m3.	The	 inner	 radius	of	 the	shell	 is	equal	 to	R1	=	5.00	cm	and	 the	outer	 radius	R2	=
10.0	cm.	Find	 the	electric	field	for	 three	points	at	distances	r	=	3.00,	6.00,	and	12.0	cm
from	the	center	of	the	shell.

Solution.	Since	 the	charge	distribution	 is	spherically	symmetric,	 the	electric	 field	points
radially	 outward.	 This	 allows	 us	 to	 apply	Gauss’s	 law	 for	 the	 solution	 of	 the	 problem.
From	 the	 symmetry	 of	 the	 problem,	 it	 follows	 that	 vector	E	 is	 directed	 along	 r	 and	 its
magnitude	 depends	 only	 on	 the	 distance	 r	 from	 the	 center	 of	 the	 shell.	We	 choose	 the
surface	of	integration	to	be	a	sphere	of	radius	r	centered	at	point	O,	the	center	of	the	shell.
Let	us	take	into	account	that	the	magnitude	of	the	electric	field	is	the	same	at	all	points	of
this	surface	and	En	=	Er.	We	apply	Gauss’s	law	for	the	electric	displacement	vector	D.	The
flux	of	the	displacement	vector	through	the	selected	Gaussian	surface	(a	sphere	of	radius
r)	is	equal	to

q=∮DdA=∮DrdA=D⋅A=D⋅4πr2.
Space	is	divided	into	three	areas:	(1)  0<r<R1,(2)  R1<r<R2,   and (3)   r>R2.	Gauss’s	law	is
applied	for	each	area.



Region	1:	0	<	r	<	R1.

The	 free	 charge	 within	 the	 first	 region	 is	 equal	 to	 zero.	 Consequently,	 the	 flux	 of	 the
displacement	vector	is	also	equal	to	zero.	Since	the	surface	area	of	the	Gaussian	surface	is
not	equal	 to	zero,	 then	 the	displacement	and	 the	electric	 field	within	 the	 first	 region	are
equal	to	zero:

D1=0,  E1=D1ε0=0.

Region	2:	R1	<	r	<	R2.

The	free	charge	inside	the	Gaussian	surface	is	given	by	the	following	expression:

qfree=4π3(r3−R13)ρ.

Applying	Gauss’s	law,	we	get

D24πr2=43π(r3−R13)ρ→E2=D2ε0κ=ρ3κε0(r−R13r2),

where	κ	is	the	permittivity	of	glass.	Substituting	the	numerical	values,	we	get

E2=100×10−93×8.85×10−12×7(0.06−0.0530.062)=13.6 V/m⋅
Region	3:	r	>	R2.

The	entire	charge	of	the	shell	is	located	inside	the	Gaussian	surface:

qfree=4π3(R23−R13)ρ.

Applying	Gauss’s	law,	we	obtain

D34πr2=43π(R23−R13)ρ→E3=D3ε0=ρ3ε0(R23−R13r2),        
E3=100×10−9(0.103−0.053)3×8.85×10−12×0.122≈229 V/m⋅

PROBLEMS
1.1	Four	identical	point	charges	q	are	placed	at	the	corners	of	a	square	with	side
a.	Find	the	net	force	(magnitude	and	direction)	acting	on	each	of	the	charges	and
the	potential	energy	of	the	system.	The	charges	are	located	in	vacuum.	(Part of 
the answer:  U=14πε0⋅q2a(4+2).)
1.2	Charge	q	 is	uniformly	distributed	on	a	very	thin	ring	of	radius	R	placed	 in
vacuum.	Find	the	electric	potential	and	the	electric	field	at	a	point	on	the	normal
to	the	ring	plane	that	passes	though	the	ring	center	(Figure	1.15)	as	a	function	of
the	distance	b	from	the	center	of	the	ring.
1.3	A	nonpolar	molecule	is	located	on	the	normal	to	a	ring	plane	(radius	R)	that
passes	through	the	ring	center	at	a	distance	z	from	the	ring	center.	The	nonpolar
molecule	dipole	moment	is	proportional	to	the	electric	field	at	the	location	of	the
molecule,	 that	 is,	 p	 =	 ε0αE,	 where	 α	 is	 the	 polarizability	 of	 the	 molecule.
Determine	the	distance	z	from	the	center	of	the	ring,	where	the	force	F	acting	on
the	molecule	is	equal	to	zero.	Assume	that	the	system	is	in	vacuum	and	ignore
all	other	forces	acting	on	the	dipole.	Note:	There	are	 two	such	positions.	Hint:
See	Exercise	1.2.	(Part	of	the	answer:	z2=±R/2.)
1.4	Two	metal	spheres	of	radii	R1	and	R2	have	charges	Q1	and	Q2	and	they	are
located	 in	 vacuum.	Find	 the	 energy	U	 that	will	 be	 released	 if	 the	 spheres	 are



connected	by	a	thin	conductor.
1.5	 Find	 the	 work	 that	 must	 be	 done	 by	 an	 external	 agent	 to	 move	 a	 small
electric	 dipole	 of	 dipole	 moment	 p	 from	 the	 surface	 of	 a	 uniformly	 charged
sphere	to	infinity.	The	sphere	radius	is	equal	to	R	and	its	charge	equal	to	Q.	The
dipole	moment	is	oriented	radially	(see	Figure	1.16).

FIGURE	1.15	Electric	field	of	a	circular	charged	ring	of	R.

FIGURE	1.16	Interaction	of	charged	sphere	with	an	electric	dipole.

1.6	Consider	 an	 insulating	 sphere	with	 a	 radius	R,	 uniformly	 charged	 over	 its
volume	with	a	total	charge	Q.	Determine	the	energy	of	the	electric	field	inside
and	outside	the	sphere,	if	the	electric	field	in	the	sphere	and	that	outside	of	the
sphere	are

E(r)={	keQr2,r≥R,keQR2⋅rR,r≤R.

1.7	Using	the	integral	form	of	Gauss’s	law,	find	the	electric	field	in	the	vicinity
of	 an	 infinite	 uniformly	 charged	 insulating	plane	with	 constant	 surface	 charge
density	σ.
1.8	 The	 potential	 associated	 with	 an	 electric	 field	 depends	 on	 the	 Cartesian
coordinates	according	to	the	equation	(i)	φ=a(x2−y2)	and	(ii)	φ=bxyz,	where	a
and	 b	 are	 constants.	 Determine	 the	 electric	 field	 in	 each	 case.	 (Part	 of	 the
answer:	E=−b(iyz+jxz+kxy).)
1.9	Determine	the	electric	field	E	of	an	electric	dipole	with	a	dipole	moment	p
at	a	point	located	at	a	distance	r−	and	r+	from	the	charges	−q	and	+q	as	shown	in
Figure	1.9	(here	q	>	0).	Assume	that	r−	and	r+	are	much	larger	than	the	charge
separation	l.



1.10	An	 infinitely	 long	 insulating	 rod	 is	 uniformly	 charged	with	 linear	 charge
density	λ1	=	3.00	×	10−7	C/m.	A	second	insulating	rod	of	finite	length	l	=	20.0
cm	is	uniformly	charged	with	linear	density	λ2	=	2.00	×	10−7	C/m.	The	two	rods
have	 their	 axes	 perpendicular	 to	 each	 other	 as	 shown	 in	 Figure	 1.17.	 The
distance	 r0	 =	 10.0	 cm.	 Determine	 the	 electric	 force	 between	 the	 two	 rods.
(Answer:	F	=	1.19	mN.)
1.11	 A	 thin	 insulating	 rod	 is	 bent	 into	 a	 semicircle	 of	 radius	 R.	 The	 rod	 is
uniformly	charged	with	a	linear	density	λ	=	133	nC/m.	Calculate	the	work	that
has	to	be	done	by	the	electric	field	to	move	a	charge	q	=	6.70	nC	from	the	center
of	 the	 semicircle	 to	 infinity	 (use	Figure	1.18	 as	 a	 hint).	 (Answer:	W	 =	 2.50	 ×
10−5	J.)
1.12	A	metal	 sphere	of	 radius	R	 is	 charged	with	charge	Q.	The	 surface	of	 the
sphere	is	covered	by	an	uncharged	dielectric	shell	of	thickness	h.	Determine	the
polarization	 of	 the	 dielectric	 shell	 if	 the	 dielectric	 permittivity	 of	 the	 shell	 is
equal	to	κ.
1.13	A	constant	voltage	V	=	300	V	is	applied	to	two	capacitors,	C1	=	100	pF	and
C2	=	200	pF,	connected	in	series.	Determine	the	energy	stored	in	each	capacitor.

FIGURE	1.17	Interaction	of	an	infinitely	long	insulating	rod	with	charge	density	λ	1	and
an	insulating	rod	of	length	l	with	linear	density	λ2.

FIGURE	1.18	Semicircle	thin	insulating	rod	charged	with	the	linear	density	λ.



FIGURE	1.19	Interaction	of	point	charges	in	vacuum	(a)	and	in	oil	(b).

1.14	Two	 identical	charged	spheres	of	 radius	a	 are	 suspended	 from	a	point	on
insulating	threads	of	equal	length.	The	threads	are	separated	by	an	angle	α.	The
spheres	 are	 immersed	 in	 oil	 of	 density	 ρO	 =	 8.00	 ×	 102	 kg/m3.	 Find	 the	 oil
permittivity	κO,	if	the	angle	α	remains	unchanged	before	and	after	immersion	in
the	oil.	The	density	of	spheres	is	equal	to	ρb	=	1.6	×	103	kg/m3.	Use	Figure	1.19
as	a	hint.



2Magnetostatics
In	1820,	Ampere	has	experimentally	established	the	law	of	interaction	of	electric	currents.
His	experiments	showed	that	two	straight	parallel	conductors,	which	carry	currents,	attract
if	both	currents	have	the	same	direction	and	repel	if	two	currents	have	opposite	directions.
The	 magnitude	 of	 the	 interaction	 force	 is	 directly	 proportional	 to	 the	 current	 in	 each
conductor	 and	 inversely	 proportional	 to	 the	 distance	 between	 them.	 It	 is	 known	 that	 in
metals	the	total	charge	of	the	positively	charged	ions	and	negatively	charged	free	electrons
is	equal	to	zero.	Moreover,	positive	and	negative	charges	are	uniformly	distributed	in	the
conductor.	 Therefore,	 the	 net	 electric	 force	 between	 the	 conductors	 is	 zero,	 and	 in	 the
absence	 of	 current,	 the	 conductors	 do	 not	 interact	 with	 each	 other.	 However,	 in	 the
presence	of	current,	 that	 is,	orderly	movement	of	charge	carriers,	 the	conductors	interact
and	 therefore,	 this	 interaction	 is	magnetic.	 In	 the	space	surrounding	 the	electric	current,
the	magnetic	field	is	generated.	The	existence	of	a	magnetic	field	can	be	detected	by	the
deviation	of	the	magnetic	needle	near	a	current-carrying	conductor	or	by	the	impact	of	that
magnetic	 field	on	a	moving	charged	particle,	 as	well	 as	by	 the	 impact	on	other	current-
carrying	conductor.

In	analogy	with	electrostatics,	in	order	to	characterize	the	magnetic	field,	the	magnetic
field	vector	B	 is	 introduced.	As	 in	 the	 case	 of	 the	 electrostatic	 field,	 the	magnetic	 field
may	be	represented	using	magnetic	field	lines	using	the	same	convention;	at	each	point,	B
is	 tangential	 to	 the	 local	 magnetic	 field	 line.	 The	 magnetic	 field	 lines,	 as	 well	 as	 the
electric	field	lines,	do	not	intersect.

2.1				INTERACTION	OF	MOVING	CHARGES
Electric	and	magnetic	phenomena	are	closely	related.	Moving	charges	are	the	sources	of
the	magnetic	field.	No	isolated	magnetic	charges	have	been	discovered	so	far.	A	magnetic
force	 is	 exerted	on	moving	electric	 charges	due	 to	 a	magnetic	 field.	Current	 consists	of
moving	 charges.	 Oersted’s	 experiments	 demonstrated	 that	 near	 a	 current-carrying
conductor,	 a	magnetic	 needle	 is	 deflected	 by	 the	magnetic	 force.	 A	 force	 between	 two
parallel	 current-carrying	 conductors	 placed	 at	 a	 distance	 b	 was	 observed	 by	 Ampere
whose	 experiments	 led	 to	 the	 formulation	 of	 an	 equation	 that	 describes	 this	 force.
According	 to	 this	 equation,	 the	 magnitude	 of	 the	 force	 dFA	 exerted	 on	 an	 element	 of
length	dl	of	each	parallel	conductor	that	carries	currents	I1	and	I2	is	given	by	the	following
expression:

dFA=km2I1I2bdl. (2.1)

In	 the	 SI,	 the	 proportionality	 coefficient	 is	 given	 as	 km=μ0/4π,	 where	 the	 magnetic
constant	μ0	=	4π	×	10−7	H/m	and	sometime	μ0	is	referred	to	as	the	permeability	of	vacuum
(note	that	H/m	=	N/A2,	where	henry	[H]	is	 the	unit	of	inductance	that	we	will	 introduce
later).	The	force	is	attractive	if	I1	and	I2	are	parallel	and	it	is	repulsive	if	I1	and	I2	flow	in
opposite	directions.	The	 interaction	between	currents	 is	due	 to	 their	magnetic	 fields;	 the



magnetic	field	of	one	current	exerts	a	force,	which	is	referred	to	as	Amperes’	force,	on	the
other	 current.	 In	 contrast	 to	 the	 electric	 field,	 the	magnetic	 field	 acts	 upon	 the	moving
charges	only.

The	 magnetic	 field	 B	 is	 described	 by	 the	 forces	 it	 exerts	 on	 moving	 charges.	 The
magnetic	force	acting	on	a	charge	q	traveling	with	velocity	v	is	given	by

FL=qv×B. (2.2)

This	force	is	known	as	the	Lorentz	force.	It	is	given	by	the	vector	product	of	two	vectors,
which	in	Cartesian	coordinates	is	given	by	the	following	equation:

v×B=|	ijkvxvyvzBxByBz	|=i(vyBz−vzBy)+j(vzBx−vxBz)+k(vxBy−vyBx). (2.3)

The	magnitude	of	the	Lorentz	force	is	given	as

FL=qvB sinα,

where	α	is	the	angle	between	v	and	B.

Equations	2.2	and	2.3	give	 the	Lorentz	 force	direction	 that	 is	always	perpendicular	 to
vectors	v	and	B.	Therefore,	the	magnitude	of	the	velocity	of	a	charged	particle	moving	in	a
magnetic	field	does	not	change	with	time.	The	right-hand	rule	is	applied	to	determine	the
direction	of	the	Lorentz	force	acting	on	a	positively	charged	particle.	The	right-hand	rule
is	applied	as	follows	to	determine	the	direction	of	v	×	B.	Rotate	v	in	the	plane	defined	by
the	vectors	v	 and	B	 along	 the	 shortest	 angle	 so	 that	 it	 coincides	with	B.	 Then	 curl	 the
fingers	of	the	right	hand	in	the	same	direction	(or	rotate	palm);	the	direction	of	the	thumb
gives	 the	 direction	 of	 v	 ×	B.	 (Please	 note	 that	 the	 same	 rule	 is	 applied	 to	 any	 other
vector/cross	 product	 as	 well	 as	 in	 determining	 the	 right-handed	 Cartesian	 coordinate
system	(x,	y,	z)	with	unit	vectors	i,	j,	k:	i	×	j	=	k,	j	×	k	=	i,	k	×	i	=	j.)

Vectors	v,	B,	and	FL	 for	a	positively	charged	particle	moving	with	 the	velocity	v	 in	a
uniform	magnetic	field	in	a	direction	perpendicular	to	B	are	illustrated	in	Figure	2.1.	In	the
example,	the	velocity	of	the	particle	v	lies	in	the	plane	perpendicular	to	the	vector	B.	The
trajectory	 is	 circular	 with	 radius	 R	 =	 mv/qB.	 The	 angular	 velocity	 (also	 known	 as
“cyclotron	frequency”)	of	 the	particle	moving	along	a	circular	 trajectory	 is	given	by	 the
equation	ωc=qB/m.

The	force	that	the	magnetic	field	B	exerts	on	a	length	of	wire	dl	(the	wire	is	assumed	to
have	a	very	small	cross	section)	that	carriers	a	current	I	is	referred	to	as	Ampere’s	force	as
it	can	be	deducted	from	Equation	2.1	(in	some	books	it	is	also	mentioned	as	Laplace	force
as	it	can	be	deducted	from	Equation	2.2).	This	force	is	determined	by	the	relation

dFA=Idl×B, (2.4)

where	 the	 direction	 of	 the	 vector	 dl	 coincides	 with	 the	 current	 direction	 at	 the	 wire
segment	 dl.	 Ampere’s	 force	 is	 the	 superposition	 of	 all	 the	 Lorentz	 forces	 acting	 on
individual	moving	charges	that	form	the	current	I.



FIGURE	2.1	Relative	position	of	vectors	v,	B,	and	FL	 for	 a	moving	positively	 charged
particle	in	the	magnetic	field.

Exercise	2.1
A	thin	semicircular	wire	(radius	R)	that	carries	a	current	I	is	placed	in	a	uniform	magnetic
field	B.	The	wire	plane	is	perpendicular	to	the	magnetic	field.	What	is	the	force	F	that	the
magnetic	field	exerts	on	the	wire?

Solution.	 Let	 us	 select	 an	 element	 dl	 with	 a	 current	 I	 (Figure	 2.2).	 Ampere’s	 force
dF=Idl×B	acts	on	this	current	element	dl.	The	right-hand	rule	discussed	earlier	is	used	to
determine	the	direction	of	this	force.	The	force	dF	has	two	projections	along	the	x-	and	y-
axes.

dF=idFx+jdFy.

The	total	force	F	acting	on	the	entire	wire	is	determined	by	the	integral

F=∫LdF=i∫LdFx+j∫LdFy,

where	 integration	 is	 carried	 out	 over	 the	 semicircle	 whose	 length	 L	 =	 πR.	 Symmetry
arguments	give	a	zero	projection	of	the	total	force	on	the	x-axis,	that	is,

iFx=i∫LdFx=0,   F=jFy=j∫LdFy,

dFy	=	dF	cosα,	where	α	is	the	angle	between	dF	and	j.	Since	vector	dl	is	perpendicular	to
vector	B,	dF	=	IBdl,	dl	=	Rdα,	then	dF	=	IBRdα	and	dFy	=	IBR	cosα	dα.

To	find	the	total	force,	we	integrate	dFy	=	IBR	cosα	dα	between	−π/2	and	+π/2:

F=j∫LdFy=jIBR∫−π/2π/2cos α dα=jIBR sin α|−π/2π/2=2jIBR.

From	this	equation,	it	follows	that	force	F	is	oriented	along	the	positive	direction	of	the	y-
axis	(i.e.,	along	vector	j).

FIGURE	2.2	Calculation	of	the	force	acting	on	a	semicircular	wire	of	radius	R	that	carries
current	I	in	a	uniform	magnetic	field	B	that	is	perpendicular	to	the	plane	of	the	wire.

2.2				FIELD	OF	MOVING	CHARGES	AND	CURRENTS,



THE	BIOT–SAVART	LAW
The	magnetic	field	of	a	point	charge	q	moving	with	the	velocity	v	is	given	by

B=kmqv×rr3, (2.5)

where	 vector	 r	 is	 directed	 from	 the	 charge	 to	 the	 point	 where	B	 is	 determined	 by	 this
equation.	 From	 this,	 it	 follows	 that	 vector	 B	 is	 perpendicular	 to	 vectors	 v	 and	 r;	 the
direction	of	B	is	determined	by	the	right-hand	rule.

According	to	the	principle	of	superposition,	the	magnetic	field	of	a	current	flowing	in	a
wire	 is	 determined	 by	 the	 combined	 effect	 of	 all	 free	 charge	 carriers	 that	 compose	 the
current.	However,	we	must	integrate	all	the	contribution	from	the	charge	carriers	in	a	wire.
It	 is	 reasonable	 to	 divide	 the	 wire	 into	 elementary	 segments	 of	 length	 dl.	 In	 this	 case,
substituting	B	→	dB	and	qv	→	 Idl	 in	Equation	2.5,	we	arrive	at	 the	 law	of	Biot–Savart
that	 determines	 the	 magnetic	 field	 generated	 by	 an	 elementary	 segment	 that	 carries	 a
current	I:

dB=kmIdl×rr3, (2.6)

where

r	is	the	vector	directed	from	the	wire	segment	to	the	observation	point
vector	dl	is	a	vector	of	magnitude	dl	that	has	the	direction	of	the	current

The	direction	of	vector	dB	coincides	with	the	direction	of	vector	product	dl	×	r.	The	right-
hand	 rule	 is	 applied	 to	 determine	 the	 direction	 of	 dl	 ×	 r.	 As	 it	 was	 already	 described
earlier,	we	rotate	dl	in	the	plane	defined	by	the	vectors	dl	and	r	along	the	shortest	angle	so
that	it	coincides	with	r.	Then	we	rotate	the	fingers	of	the	right	hand	in	the	same	direction
(or	rotate	palm).	The	direction	of	the	thumb	gives	the	direction	of	dl	×	r.	The	magnitude	of
vector	dB	is	given	by	the	relation

dB=kmIdl sin αr2, (2.7)

where	α	is	an	angle	between	vectors	dl	and	r.

The	superposition	principle	is	valid	for	the	magnetic	field.	The	resultant	magnetic	field
created	by	the	entire	conductor	at	a	given	observation	point	is	equal	to	the	vector	sum	of
the	fields	generated	individually	by	each	current	element.	Superposing	is	provided	through
integration	over	the	conductor:

B=km∫(l)Idl×rr3. (2.8)

If	a	conductor	is	not	1D	(i.e.,	its	cross	section	is	not	negligible),	then	taking	into	account
Idl=jdV,	where	j	is	the	current	density	in	the	plane	perpendicular	to	dl	and	dV	=	d3r	is	an
element	of	conductor	volume,	we	can	calculate

B=km∫(Vol)j×rr3d3r, (2.9)



where	Vol	 is	 the	 conductor	 volume,	 in	which	 current	 flows.	 In	 general,	 it	 is	 difficult	 to
determine	 B	 from	 these	 equations.	 However,	 if	 current	 distribution	 exhibits	 certain
symmetry,	one	can	easily	calculate	B	by	applying	the	Biot–Savart	law	in	connection	with
the	superposition.

Exercise	2.2
A	 current	 I	 flows	 in	 a	 thin	 conducting	 ring	 of	 radius	R.	 Determine	 the	 magnetic	 field
vector	at	a	point	A	located	on	the	ring	axis	at	a	distance	b	from	the	ring	center.

Solution.	Let	us	select	an	element	dl	 in	a	ring	and	draw	a	position	vector	r	 from	it	 to	a
point	A	(Figure	2.3).	We	then	decompose	vector	dB,	which	 is	perpendicular	 to	 the	plane
defined	by	dl	×	r	 into	 components	dB||	 and	dB⊥	 parallel	 and	perpendicular	 to	 the	 ring
axis,	 respectively.	 According	 to	 the	 superposition	 principle,	 the	 magnitude	 of	 each
component	of	the	net	magnetic	field	is	given	by	integrals

B||=∮LdB||,   B⊥=∮LdB⊥, (2.10)

where	dB||=dB cosβ,  dB⊥=dB sinβ.	Integration	is	carried	out	over	all	the	elements	dl	into
which	 the	 ring	 was	 divided.	 Due	 to	 the	 symmetry	 of	 the	 current	 distribution,	 the
component	of	the	net	field	B⊥	is	zero	for	a	closed	ring	current.

The	elementary	components	of	 field	dB||	 from	different	elements	of	 the	 ring	have	 the
same	direction.	Thus,	the	component	of	the	net	field	B||	does	not	vanish.	This	component
can	be	determined	by	using

dB||=dB cosβ=kmIdlr2cosβ, (2.11)

where	vector	dl	is	perpendicular	to	vector	r.	Hence,

B||=kmIr2cosβ∫02πRdl=kmI cosβ⋅2πRr2. (2.12)

Since	cos	β	=	R/r,	we	have

B||=km2πIR2r3=km2πIR2(b2+R2)3/2. (2.13)

At	the	coil	center,	that	is,	at	b	=	0,	the	field	reaches	its	maximum	and	it	is	equal	to

B||(0)=km2πIR=μ0I2R. (2.14)



FIGURE	 2.3	 Calculation	 of	 a	 magnetic	 field	 of	 a	 circular	 wire	 of	 radius	 R	 carrying
current	I.

Introducing	 the	magnetic	moment	 vector	 of	 a	 coil	μm	 into	Equation	 2.13	 simplifies	 the
relations.	The	magnitude	of	vector	μm	 is	equal	 to	 the	product	of	 the	current	and	the	coil
area;	its	direction	is	given	by	the	right-hand	rule:

μm=IAn=πR2In. (2.15)

Taking	into	account	these	relations,	the	vector	B	of	a	coil	is	given	by

B||=km2IAnr3=km2μmr3. (2.16)

2.3				AMPERE’S	LAW
1.	For	 symmetric	 current	 configurations,	 the	 calculation	of	 the	magnetic	 field	 is	usually
simplified.	 In	 this	case,	Ampere’s	 law	can	be	applied	quite	easily.	Let	us	define	 the	 line
integral	of	vector	B	along	a	closed	loop.	In	a	space	in	which	a	magnetic	field	is	present,
we	 select	 a	 closed	 loop	and	assign	 a	direction	 along	which	we	 traverse	 the	 loop	 (either
clockwise	or	counterclockwise).	For	each	elementary	length	dl	of	this	loop,	one	can	define
the	projection	Bl	 of	vector	B	 along	 the	 direction	 of	 the	 tangent	 to	 this	 contour	 segment
(Figure	2.4).	The	line	integral	of	vector	B	is	defined	as	the	integral	of	the	scalar	product	B
⋅	dl	over	the	entire	path	along	the	chosen	direction:

∮LB⋅dl=∮LBldl. (2.17)

Some	 currents	 can	 penetrate	 the	 area	 defined	 by	 the	 chosen	 loop,	 while	 others	 do	 not.
Ampere’s	law	states	that	the	line	integral	of	B	over	any	closed	path	is	equal	to	the	product
of	the	magnetic	permeability	μ0	of	vacuum	and	the	sum	of	all	currents	that	penetrate	the
area	defined	by	the	path,	that	is,

∮LB⋅dl=μ0∑	Ij. (2.18)

FIGURE	2.4	Explanation	of	Ampere’s	law.

The	line	integral	of	the	vector	B	along	a	path	is	nonzero	if	the	path	encloses	a	current.	The
relation	(2.18)	 is	 called	Ampere’s	 law.	Using	Stokes’	 theorem,	an	 integral	over	a	closed
path	of	the	vector	B	can	be	transformed	into	an	integral	over	the	surface	that	has	the	path



as	its	border,	that	is,

∮LB⋅dl=∫A∇×B⋅dA. (2.19)

Introducing	the	right-hand	part	of	this	relation	into	Equation	2.18,	we	arrive	at

∫A∇×B⋅dA=μ0∑	Ij=μ0∫Aj⋅dA. (2.20)

Comparison	of	the	left-	and	right-hand	parts	of	this	equation	gives	the	following	relation:

∇×B=μ0j. (2.21)

The	latter	two	relations	contain	a	differential	vector	operation	curl	B	that	is	determined	by
a	vector	product	∇	×	B	 and	 is	given	 in	Cartesian	 coordinates	 as	 follows	 (compare	with
Equation	2.3):

∇×B=|	ijk∂∂x∂∂y∂∂zBxByBz	|=i(∂Bz∂y−∂By∂z)+j(∂Bx∂z−∂Bz∂x)+k(∂By∂x
−∂Bx∂y). (2.22)

2.	Let	us	introduce	the	quantity

dΦB=B⋅dA (2.23)

that	defines	 the	element	of	 the	magnetic	 flux	(i.e.,	 the	 flux	of	 the	vector	B	 through	area
dA).	The	unit	of	this	quantity	in	the	SI	is	weber	(Wb):	Wb	=	T	⋅	m2,	where	Tesla	(T)	is	the
unit	of	the	magnetic	fields	in	the	SI.	Since	the	magnetic	field	lines	are	always	closed,	the
flux	 of	 the	 vector	B	 through	 any	 closed	 surface	 is	 zero.	 Thus,	Gauss’s	 theorem	 for	 the
vector	B	is	given	as

∮AB⋅dA=0. (2.24)

This	 equation	 is	 one	 of	 the	 formulations	 of	 one	 of	Maxwell’s	 equations	 known	 also	 as
“Gauss’s	law	for	the	magnetic	field,”	and	the	earlier	equation	is	consistent	with	Maxwell’s
equation

div	B=0. (2.25)

A	 unique	 potential	 cannot	 be	 assigned	 for	 the	 magnetic	 field	 because	 it	 would	 be
multivalued.	After	each	traversal	of	the	path,	the	potential	would	be	incremented	by	μ0I.
Such	fields	are	referred	to	as	solenoidal	fields.

A	 typical	 application	 of	 Ampere’s	 law	 is	 the	 calculation	 of	 the	magnetic	 field	 of	 an
infinitely	long	solenoid.	A	long	coil	consisting	of	multiple	turns	of	wire	wound	in	a	helical
geometry	 around	 a	 cylindrical	 core	 is	 called	 a	 solenoid.	 If	 a	 current	 flows	 through	 the
solenoid,	a	homogeneous	(as	long	as	we	stay	away	from	the	solenoid	ends)	magnetic	field
is	 generated	 inside	 the	 solenoid.	We	will	 consider	 this	 field	 in	more	 details	 in	 the	 next



section.

FIGURE	2.5	The	calculation	of	a	magnetic	field	of	a	 thin	and	infinitely	 long	conductor
carrying	a	current	I.

Exercise	2.3
Using	 Ampere’s	 law,	 calculate	 the	 magnetic	 field	 B	 generated	 by	 an	 infinitely	 long
conductor	carrying	current	I.

Solution.	Choose	an	observation	point	 located	at	a	distance	r	 from	a	conductor.	Draw	a
thin	circular	integration	path	through	this	point	(as	given	in	Figure	2.5)	so	that	the	plane	of
the	circle	is	perpendicular	to	the	wire.	Since	the	direction	of	vector	B	is	along	the	tangent
to	the	circular	path	at	every	point,	then	B	⋅	dl	=	Bdl.	The	magnitude	of	B	is	constant	at	all
points	of	the	circular	path	due	to	the	symmetry	of	the	problem.	Thus,	from	Equation	2.18,
we	arrive	at

∮LB⋅dl=∮LBdl=B∮Ldl=B⋅2πr=μ0I.
Hence,	B=μ0I/2πr=km⋅2I/r.

2.4				MAGNETIC	FIELD	OF	A	SOLENOID
1.	If	a	direct	current	is	passed	through	the	windings	of	the	solenoid,	a	static	magnetic	field
is	generated	inside	as	well	as	outside	the	solenoid.	Figure	2.6	shows	a	schematic	diagram
of	the	solenoid	and	also	the	magnetic	field	lines	generated	by	the	solenoid.

We	will	 calculate	 the	magnetic	 field	 on	 the	 axis	 of	 a	 solenoid	 of	 finite	 length	L	 and
radius	R	assuming	that	the	solenoid	has	N	turns.	The	number	of	turns	per	unit	length	n	is
equal	to	N/L:	n	=	N/L.	It	is	easy	to	calculate	the	magnetic	field	of	the	solenoid,	if	we	use
Equation	2.12,	which	gives	the	magnetic	field	of	a	circular	coil	on	its	axis:

B=kmI cosβ⋅2πRr2=μ0IR2⋅sin αr2. (2.26)

FIGURE	 2.6	 Schematics	 of	 the	 solenoid	 and	 the	 magnetic	 field	 lines	 of	 the	 solenoid



carrying	current	I.

Here,	we	have	 introduced	 the	angle	 a	between	 the	axis	of	 the	 solenoid	and	 the	position
vector	of	the	point	A	in	Figure	2.7.	We	want	to	determine	the	magnetic	field	at	point	A	that
is	included	by	each	circular	turn	of	the	coil.	It	is	more	convenient	to	consider	angle	α	that
is	 complementary	 to	 angle	 β	 (i.e.,	 α	 =	 π/2	 –	 β).	 For	 each	 turn	 in	 (2.26),	 there	 is	 a
corresponding	angle	α	and	a	position	vector	r.	Let	us	choose	an	element	of	the	solenoid	of
length	dl	containing	ndl	turns.	From	Equation	2.26,	the	magnetic	field	generated	by	these
turns	can	be	written	as

dB=μ0(IR2)⋅(sin αr2)ndl. (2.27)

From	the	definition	of	angle	α,	it	follows	that	sin	α	=	R/r.	By	differentiating	this	relation,
we	obtain

cos α dα=−(Rr2)dr,

where	dr	=	(dl)cos	α,	that	is,	dα	=	–(R/r2)dl.	By	integrating	Equation	2.27	over	the	angle	a
in	the	interval	α1≤α≤α2,	we	get

B=μ02In(cosα2−cosα1). (2.28)

Here,	α1	and	α2	are	the	angles	shown	in	Figure	2.7a.	For	points	lying	inside	the	solenoid,
π/2	 ≤	 α1	 <	 π,	 and	 therefore,	 cos	 α1<0, 0<α2<π/2,  and  cos	 α2>0,	 so	 B	 is	 positive	 (see
Figure	2.7a).

FIGURE	2.7	Calculation	of	 the	magnetic	 field	of	a	 solenoid	 (a)	and	dependence	of	 the
magnetic	field	on	the	coordinate	along	the	center	of	the	solenoid	(b).

Equation	2.28	is	an	expression	for	the	magnetic	field	on	the	axis	of	a	solenoid	of	finite



length.	In	the	case	of	a	very	long	solenoid	(L	≫	2R),	when	the	angle	α1	→	π	and	cos	α1	→
−1	and	 the	angle	α2	→	0	and	cos	α2	→	1,	 the	 field	 inside	 the	 solenoid	 is	 given	by	 the
expression

B=μ0nI[	T	], (2.29)

where	the	product	nI	is	called	the	number	of	ampere-turns	per	meter.

At	the	ends	of	a	sufficiently	long	solenoid,	either	the	angle	α1	or	the	angle	α2	is	equal	to
π/2.	Therefore,	the	field	in	this	case	is	equal	to	B(0)=B(L)=μ0nI/2.	Thus,	at	the	ends	of	the
axis	of	the	solenoid,	the	value	of	the	magnetic	field	is	half	the	value	in	the	middle.

Next,	we	will	obtain	the	magnetic	field	B(x)	along	the	axis	of	the	solenoid.	We	place	the
origin	x	=	0	 at	 the	 center	of	 the	 solenoid	on	 its	 axis.	An	observation	point	A	 inside	 the
solenoid	has	its	x-coordinate	lying	in	the	interval	−L/2≤x≤L/2.	In	this	case,	the	cosines	of
the	angles	α1	and	α2	are	given	by	the	expressions

cos α1=−L/2+x(L/2+x)2+R2,   cos α2=L/2−x(L/2−x)2+R2.

By	substituting	these	expressions	into	Equation	2.28,	we	obtain

B(x)=μ02nI(L/2+x(L/2+x)2+R2+L/2−x(L/2−x)2+R2). (2.30)

At	the	center	of	 the	solenoid	(x	=	0),	 the	value	of	 the	magnetic	field	 is	maximum;	at	 its
ends	(x	=	±	L/2),	it	is	minimum;	the	magnetic	field	values	are	given	by	the	relations

B(0)=μ0nI⋅LL2+(2R)2,    B(±L/2)=μ0nI2⋅LL2+R2.
Consider	 the	 situation	 for	 which	 the	 observation	 point	 is	 on	 the	 axis	 of	 the	 solenoid
outside	of	 the	coil.	 In	fact,	even	in	this	case,	expression	(2.30)	remains	valid,	 if	we	take
into	account	that	|	x	|≥L/2.	Thus,

cos α1=−x+L/2(x+L/2)2+R2,   cos α2=−x−L/2(x−L/2)2+R2

and	the	magnetic	field	can	be	written	as

B(x)=μ02nI(x+L/2(x+L/2)2+R2−x−L/2(x−L/2)2+R2). (2.31)

In	the	expressions	given	earlier,	we	have	assumed	that	the	windings	are	wound	tightly	on
the	 frame	of	 the	 solenoid	and	 their	planes	are	perpendicular	 to	 the	 axis	of	 the	 solenoid.
Only	in	this	case,	the	resulting	field	of	the	solenoid	has	axial	symmetry	and	has	only	one
component	parallel	 to	 its	axis.	 In	a	 real	 solenoid,	 the	coil	 is	a	 spiral	with	a	pitch	 that	 is
equal	 to	 the	 thickness	 of	 the	wire.	 Therefore,	 a	 real	 solenoid	 always	 has	 component	 of
current	 along	 the	 axis	 that	 is	 determined	by	 the	 angle	 of	 inclination	of	 the	plane	of	 the
turns	to	the	axis	of	the	solenoid.	The	presence	of	the	longitudinal	component	of	the	current
leads	 to	 a	 weak	 magnetic	 field	 outside	 the	 solenoid.	 In	 order	 for	 the	 longitudinal
component	of	the	current	in	the	solenoid	to	be	removed,	the	coil	winding	is	usually	placed
in	two	layers—one	layer	is	winding	forward	and	the	other	layer	is	winding	in	the	reverse
directions.	In	this	case,	the	transverse	components	of	the	current	in	the	layers	are	added,
while	 the	 longitudinal	 components	 subtracted.	Thus,	 the	 longitudinal	 component	 of	 one



layer	offsets	the	component	of	the	other	layer.

Outside	 the	solenoid,	 the	value	of	B	 rapidly	decreases	 in	either	direction.	Figure	2.7b
shows	the	distribution	of	the	magnetic	field	B(x)	along	the	axis	of	the	solenoid,	based	on
expressions	 (2.30)	 and	 (2.31).	 It	 is	 clear	 that	 B	 rapidly	 tends	 to	 zero	 with	 increasing
distance	from	the	ends	of	the	solenoid.

In	 order	 to	 determine	 the	 field	 outside	 of	 the	 solenoid,	 let	 us	 consider	 two	 pairs	 of
current	 elements	 equal	 to	 each	 other	 and	 arranged	 symmetrically	with	 respect	 to	 cross-
sectional	plane	AA	that	is	perpendicular	to	the	axis	of	the	solenoid	(Figure	2.8).	Currents
Idl1	are	referred	to	as	the	“outgoing”	currents,	while	Idl2	as	the	“incoming.”	According	to
the	law	of	Biot–Savart,	the	pairs	of	these	current	elements	will	create	in	each	point	of	the
cross-sectional	AA	magnetic	fields	whose	magnetic	fields	dB1	and	dB2	inside	the	solenoid
are	directed	in	one	direction	and	outside	the	solenoid	in	the	opposite	direction.	For	regions
outside	 of	 the	 solenoid,	 |	 dB1	 |>|	 dB2	 |,	 since	 the	 elements	 Idl1	 are	 closer	 to	 the
observation	point	(see	distances	r′1	and	r″1	in	Figure	2.8)	than	the	elements	Idl2	(they	are
at	 distances	 r′2	 and	 r′2;	 see	 Figure	 2.8).	 Therefore,	 the	 resulting	 field	 |	 dB1+dB2
|=dB1−dB2	is	much	smaller	than	the	field	generated	by	these	elements	inside	the	solenoid,
where	the	fields	of	these	elements	add	up.	We	note	that	for	an	infinitely	long	solenoid,	the
magnetic	 field	 lines	 outside	 the	 solenoid	 are	 parallel	 to	 the	 axis	 of	 the	 solenoid	 and
antiparallel	 to	 each	 other.	 It	 can	 be	 shown	 that	 the	 total	 field	 of	 the	 selected	 current
elements	decreases	in	proportion	1/b3	where	the	distance	b	from	the	axis	of	the	solenoid	b
≫	R.	Thus,	at	points	located	at	a	sufficiently	large	distance	from	the	axis	of	the	solenoid,
the	magnetic	field	is	practically	equal	to	zero.

2.	An	infinitely	 long	solenoid	 is	an	 idealized	model	of	a	real,	sufficiently	 long	solenoid.
The	application	of	Ampere’s	law	to	an	infinitely	long	solenoid	allows	us	to	get	the	correct
expression	for	the	magnetic	field	without	integration.

Let	us	select	a	closed	rectangular	loop,	with	two	sides	parallel	and	the	other	two	sides
perpendicular	 to	 the	axis	of	 the	solenoid	(Figure	2.9).	Let	 the	 loop	portion	3→4	be	at	 a
distance	from	the	solenoid	much	greater	than	its	diameter	and	the	section	1→2,	which	is
parallel	 to	 the	 axis	 of	 the	 solenoid,	 be	 located	 in	 one	 case	 inside	 the	 solenoid	 (this
particular	 case	 is	 shown	 in	 Figure	 2.9a)	 and	 in	 another	 case	 outside	 the	 solenoid	 (this
particular	 case	 is	 shown	 in	 Figure	 2.9b).	 The	 line	 integral	 of	B	 along	 the	 closed	 loop
1→2→3→4	 is	 equal	 to	 the	 sum	 of	 the	 corresponding	 line	 integrals	 for	 each	 of	 the
sections:



FIGURE	2.8	Calculation	of	the	magnetic	field	outside	of	a	solenoid.

FIGURE	2.9	Calculation	of	the	magnetic	field	inside	(a)	and	outside	of	a	solenoid	(b).

∮LB⋅dl=∫1→2B⋅dl+∫2→3B⋅dl+∫3→4B⋅dl+∫4→1B⋅dl              
=∫1→2Bldl+∫2→3Bldl+∫3→4Bldl+∫4→1Bldl. (2.32)

Since	the	magnetic	field	lines	are	parallel	to	the	axis,	then	at	all	points	of	section	1→2,	B1
=	const.	In	sections	2→3	and	4→1	of	the	contour,	vector	B	is	perpendicular	to	the	contour
element	dl.	 Consequently,	 the	 projection	 is	Bl	 =	 0	 at	 all	 points	 on	 section	 2→3	 and	 on
section	4→1.	Points	on	section	3→4	are	at	a	distance	much	greater	than	the	diameter	of
the	 solenoid.	As	 noted	 earlier,	 at	 these	 points	we	may	 consider	 that	B	 =	 0	with	 a	 good
degree	of	accuracy.	Thus,

∮LBldl=∫1→2Bldl=B∫1→2dl=Bl, (2.33)

where	l	 is	 the	length	of	section	1→2.	Thus,	combining	Equations	2.18	and	2.33,	we	can
write

∮LBldl=Bl=μ0nlI, (2.34)

where	n	 is	 the	density	of	 the	windings	(number	of	 turns	per	unit	 length	of	 the	solenoid)
and	nl	is	the	number	of	turns	per	length	l.	The	result	of	Equation	2.34	does	not	depend	on
how	far	from	the	axis	of	the	solenoid	section	1→2	is	as	long	as	it	is	inside	of	the	solenoid.

If	we	move	section	1→2	outside	of	the	solenoid,	we	have	no	currents	enclosed	by	the



loop	and	∮LBldl=0.

Thus,	 the	magnetic	 field	 inside	an	 infinitely	 long	solenoid	can	be	considered	uniform
and	 equal	 to	B=μ0nI,	which	 coincides	with	 (2.29),	 and	 outside	 of	 it	 the	magnetic	 field
vanishes.	 A	 real	 solenoid,	 if	 its	 length	L	 is	 much	 greater	 than	 its	 diameter	 2R,	 can	 be
approximated	by	an	infinitely	long	solenoid.

Exercise	2.4
What	must	the	ratio	of	the	length	L	of	a	coil	to	its	diameter	d	be	to	be	able	to	calculate	the
magnetic	field	at	the	center	of	the	coil	using	the	equation	for	an	infinitely	long	solenoid	so
that	the	resulting	error	does	not	exceed	1%?

Solution.	For	the	magnetic	field	on	the	axis	of	the	solenoid	of	finite	length,	we	have	from
Equation	2.28

B=μ0In2(cosα2−cosα1).

For	 an	 infinitely	 long	 solenoid,	 B∞=μ0In.	 For	 the	 field	 intensity	 at	 the	 center	 of	 the
solenoid	due	to	the	symmetry	of	the	problem,	we	have	(consult	Figure	2.7)

α1=π−α2.

At	the	same	time,	cos	α1	=	−cos	α2	and

B=μ0In2(2cosα2)=μ0In cosα2.

The	relative	error	is

η=ΔBB=B∞−BB=B∞B−1=μ0Inμ0In cosα2−1=1cosα2−1.

Thus,	cosα2=1/(1+η).	Since	cosα2=L/L2+d2,	then

LL2+d2=11+η,    1+d2L2=1+η,  dL=(2+η)η.

Finally,	we	get

Ld=1(2+η)η=1(2+0.01)×0.01≃7.00.

2.5				MAGNETIC	FIELD	IN	A	MEDIUM,	MAGNETIC
FIELD	INTENSITY

1.	Experiments	 show	 that	 the	magnetic	 field	produced	by	electric	 currents	 in	 a	material
differs	 from	 the	 magnetic	 field	 generated	 by	 the	 same	 currents	 in	 vacuum.	 A	 material
placed	 in	 a	magnetic	 field	 is	magnetized	and	 itself	becomes	a	 source	of	magnetic	 field.
Materials	capable	of	being	magnetized	in	a	magnetic	field	are	called	magnetic	materials.	A
magnetized	material	creates	its	own	magnetic	field	B′	generated	by	microscopic	currents.
This	field	 is	added	to	 the	magnetic	field	B0	generated	by	currents	 from	external	charges
(macroscopic	currents).	The	resultant	 field	 in	 the	material	 is	B	=	B0	+	B′.	The	absolute
value	 of	 a	 ratio	 between	B	 and	B0	 is	 called	 the	 relative	 magnetic	 permeability	 of	 the
material	κm	=	B/B0.

The	 magnetic	 properties	 of	 matter	 are	 determined	 by	 the	 magnetic	 properties	 of	 its
constituent	atoms.	The	magnetic	properties	of	protons	and	neutrons	are	 less	pronounced



than	the	magnetic	properties	of	electrons	by	a	factor	mp/me	=	1836,	where	mp	and	me	are
mass	of	protons	(neutrons)	and	electrons.	Therefore,	the	magnetic	properties	of	a	material
are	largely	determined	by	the	electrons	of	its	constituent	atoms.

In	 the	 classic	 physics	 picture	 of	 an	 atom,	 an	 electron	 generates	 a	 magnetic	 field	 by
orbiting	 around	 the	 nucleus.	 This	 motion	 can	 be	 regarded	 as	 a	 circular	 current	 with	 a
corresponding	 orbital	magnetic	moment	μorb.	 In	 addition,	 an	 electron	 generates	 its	 own
magnetic	field	due	to	its	 intrinsic	(a.k.a.	spin)	moment	μspin.	The	magnetic	moment	of	a
multielectron	atom	is	the	vector	sum	of	the	orbital	and	spin	moments	from	all	its	electrons.
The	magnetic	 fields	 of	 electrons	 (spin	 and	 orbital)	 determine	 a	wide	 range	 of	magnetic
properties.	 The	 interaction	 of	 the	 atomic	magnetic	moments	 with	 an	 external	 magnetic
field	accounts	for	the	magnetic	properties	of	the	material.

Let	us	consider	a	 relatively	 small	volume	of	a	particular	material.	The	 total	magnetic
moment	of	all	atoms	in	this	volume	is

μm=∑	μi. (2.35)

The	magnetization	M	of	a	material	is	defined	as	the	magnetic	moment	per	unit	volume	of
medium	defined	as

M=limVol→0(1Vol∑	μi). (2.36)

The	magnetization	is	a	characteristic	of	the	material.

2.	 As	 mentioned	 earlier,	 the	 net	 magnetic	 field	 B	 in	 a	 material	 is	 generated	 by	 all
macroscopic	and	microscopic	currents.	Ampere’s	law	(see	Equation	2.18)	for	the	magnetic
field	in	vacuum	can	be	generalized	for	a	case	of	magnetic	field	in	matter	as	follows:

∮LB⋅dI=μ0(Imacro+Imicro), (2.37)

where	 Imacro	 and	 Imicro	 are	 an	 algebraic	 sum	 of	 macroscopic	 and	 microscopic	 currents
enclosed	 inside	 the	closed	path	L.	The	sum	of	 the	microscopic	currents	 is	 related	 to	 the
line	integral	of	the	magnetization	vector	through	the	relation

Imicro=∮LM⋅dI. (2.38)

Taking	into	account	this	equation,	Ampere’s	law	can	be	written	as

∮L(Bμ0−M)⋅dI=Imacro. (2.39)

Vector	 B/μ0−M=H	 is	 called	 the	 magnetic	 field	 intensity,	 also	 terms	 magnetic	 field
strength	as	well	as	simply	magnetic	field	are	used	in	the	literature	for	H.	Thus,	Ampere’s
law	for	magnetic	fields	in	matter	states	that	the	line	integral	of	the	magnetic	field	intensity
vector	along	an	arbitrary	closed	path	is	equal	to	the	algebraic	sum	of	macroscopic	currents
enclosed	inside	the	path:



∮LH⋅dI=Imacro. (2.40)

This	relation	expresses	Ampere’s	law	in	integral	form.	Its	differential	form	is

∇×H=jmacro. (2.41)

The	magnetization	of	an	isotropic	medium	is	related	to	the	magnetic	field	intensity	H	by
the	expression

M=χmH, (2.42)

where	χm	 is	a	dimensionless	coefficient	 that	characterizes	 the	magnetic	properties	of	 the
material,	and	it	is	called	the	magnetic	susceptibility.	This	coefficient	 is	connected	to	 the
magnetic	permeability	of	a	substance	by	the	relation	κm=1+χm.	Taking	into	consideration
the	definition	of	vector	H,	we	arrive	at

B=μ0(H+M)=μ0(1+χm)H=μ0κmH. (2.43)

Hence,

H=Bμ0κm(A/m). (2.44)

The	 dimensionless	 quantity	 κm=1+χm	 is	 the	 relative	 magnetic	 permeability	 of	 the
material.	 For	 diamagnetic	 materials,	 χm	 is	 negative	 (i.e.,	 the	 field	 of	 the	 microscopic
currents	is	opposite	to	the	external	field).	For	paramagnetic	materials,	χm	 is	positive	(the
field	of	the	microscopic	currents	has	the	same	direction	with	the	external	filed).	Since	the
absolute	value	of	the	magnetic	susceptibility	for	diamagnetic	and	paramagnetic	materials
is	very	small	(some	10−4	–	10−6),	for	these	materials,	κm	differs	only	slightly	from	unity.
Thus,	for	diamagnetic	materials,	χm	<	0	and	χm	<	1,	and	for	paramagnetic	materials,	χm	>	0
and	κm	>	1.

Exercise	2.5
A	cylindrical	infinitely	long	conductor	of	radius	R	carries	a	current	of	constant	density	j
(Figure	 2.10).	 Find	 the	 dependence	 of	 the	 magnetic	 field	 B	 on	 the	 distance	 from	 the
conductor	axis.

Solution.	 The	 magnetic	 field	 lines	 generated	 by	 such	 a	 current-carrying	 conductor	 are
concentric	 circles	 enclosing	 the	 conductor	 axis.	 Using	 Ampere’s	 law,	 let	 us	 write	 the
following	relations	for	B:

∮LB⋅dI=μ0I=μ0∫Aj⋅dA
where

j	is	the	current	density
A	is	the	area	enclosed	by	the	path	L



FIGURE	2.10	Calculation	of	the	magnetic	field	of	a	cylindrical	infinitely	long	conductor
of	radius	R	that	carries	a	current	of	constant	density.

FIGURE	2.11	Dependence	 of	 the	magnetic	 field	B	 on	 the	 distance	 from	 the	 conductor
axis	of	the	wire	shown	in	Figure	2.10.

First,	 let	 us	 consider	 the	 case	 for	 which	 r	 ≤	R,	 when	 the	 integration	 path	 is	 inside	 the
conductor.	The	area	element	vector	dA	 is	parallel	with	 j.	The	path	L	 coincides	with	 the
magnetic	 field	 line;	hence,	 the	path	elementary	vector	dl	 is	parallel	with	B.	The	surface
enclosed	 by	 the	 path	 has	 area	 A	 =	 πr2,	 and	 the	 total	 current	 through	 this	 surface	 is
IA=jA=jπr2.

Integration	yields	B2πr=μ0jπr2.	Hence,	the	following	dependence	of	the	magnetic	field
on	r	is	obtained:

B(r)=μ0jπr22πr=μ0jr2,   r≤R.

Let	 us	 consider	 the	 case	 for	 which	 r	 >	 R,	 when	 the	 integration	 path	 is	 outside	 the
conductor.	Since	there	is	no	current	outside	the	conductor,	the	magnetic	field	is	generated
by	the	total	current	I=jπR2.	Here,	B2πr=μ0jπR2;	hence,

B(r)=μ0jπR22πr=μ0jR22r,   r>R.

A	plot	of	the	B(r)	as	function	of	r	is	shown	in	Figure	2.11.	For	r	<	R,	the	dependence	of	B
on	 r	 is	 linear.	 For	 r	 >	 R,	 this	 dependence	 is	 hyperbolic.	 At	 the	 boundary	 r	 =	 R,	 the
magnetic	field	is	continuous,	that	is,	it	does	not	exhibit	a	discontinuity	due	to	the	absence
of	surface	currents.

PROBLEMS
2.1	Two	infinitely	long,	parallel	wires	carry	currents	I1	and	I2	(Figure	2.12).	The
distance	between	the	two	wires	is	equal	to	b.	Determine	the	magnetic	field	at	a
point	lying	on	the	line	connecting	the	two	wires	at	the	distance	r1	from	the	first
wire.	Consider	two	cases:	(a)	the	currents	are	flowing	in	opposite	directions	and
(b)	the	currents	are	flowing	in	the	same	direction.



2.2	A	 long	 thin	conductor	 is	bent	as	shown	in	Figure	2.13.	The	coil	 in	 the	x0z
plane	consists	of	three	quarters	of	a	full	circle	of	radius	R.	The	conductor	carries
a	 current	 I.	 Find	 the	 vector	B	 and	 its	 magnitude	 at	 the	 center	 O	 of	 the	 coil.
Assume	that	the	coil	is	in	vacuum.	(Part  of the  answer:  B=μ0I4πR(−i+j3π2−k).)
2.3	A	 charged	 particle	moves	with	 constant	 velocity	 v	 =	 2.00	 ×	 106	m/s	 in	 a
uniform	 magnetic	 field	 B	 =	 0.50	 T	 on	 a	 circular	 orbit	 whose	 plane	 is
perpendicular	to	the	magnetic	field.	The	radius	of	the	orbit	is	equal	to	R	=	2.00
cm	and	the	kinetic	energy	of	the	particle	W	=	2.00	×	104	eV.	Determine	(a)	the
charge	 of	 the	 particle,	 (b)	 the	 potential	 difference	 that	 accelerates	 the	 particle
from	rest	to	v	=	2.00	×	106	m/s	before	entering	into	the	magnetic	field,	and	(c)
the	magnetic	moment	μm	of	the	cyclotron	orbit.	(Answer:	(a)	q	=	3.20	×	10−19	C,
(b)	V	=	4.00	kV,	and	(c)	μm	=	6.40	×	10−13	A	⋅	m2.)

FIGURE	2.12	Magnetic	field	of	two	parallel	wires.

FIGURE	2.13	Magnetic	field	of	three	quarters	of	a	circle	of	radius	R.

2.4	A	 long	cylindrical	uniform	solenoid	 is	 filled	by	 two	magnetic	materials	as
shown	 in	 Figure	 2.14.	A	 current	 I	 is	 flowing	 in	 the	 solenoid’s	windings.	 The
number	 of	 turns	 per	 unit	 length	 in	 the	 winding	 is	 equal	 to	 n.	 The	 magnetic
permeability	 of	 the	 inner	 magnetic	 material	 is	 equal	 to	 κm1	 and	 that	 of	 the
external	equal	to	κm2.	The	radius	of	the	inner	cylinder	is	equal	to	R1	and	that	of
the	 external	 equal	 to	 R2.	 Determine	 the	 density	 of	 the	 microscopic	 surface
currents	 in	 the	magnetic	materials	(consult	Equations	2.37	and	2.38).	 (Answer:



Jm=(κm1−κm2)nI at  r=R1	and	Jm=(κm2−1)nI at r=R2)
2.5	 Can	 the	 magnetic	 field	 in	 vacuum	 depend	 on	 coordinates	 as	 (a)
B(x,y,z)=α(2xi−yj+4zk)	or	(b)	B(x,y,z)=α(xi+2yj−3zk)?
Here,	α	is	a	constant	with	the	dimension	(T/m)	and	i,	j,	and	k	are	the	unit	vectors
of	Cartesian	 system	of	 coordinates.	Find	 the	 spatial	 distribution	of	 the	 current
density.	 (Answer:	 (a)	 the	 magnetic	 field	 cannot	 have	 such	 a	 dependence	 on
coordinates	 and	 (b)	 the	 magnetic	 field	 can	 have	 such	 a	 dependence	 on
coordinates.	The	spatial	distribution	of	current	density	for	case	(b)	is	j	=	0.)

FIGURE	 2.14	 Solenoid	 filled	 by	 two	 different	 magnetic	 materials	 with	 magnetic
permeabilities	κm1	for	the	inner	material	and	κm2	for	the	outer	shell.

2.6	Find	the	magnetic	field	generated	by	an	infinitely	long	(ideal)	solenoid	with
n	turns	per	unit	length	and	current	I	using	Ampere’s	law.	(Hint:	Consult	Figure
2.15)	(Answer:	B	=	μ0nI.)
2.7	A	long	thin	wire	is	carrying	a	current	I1.	A	loop	with	current	I2	is	located	in
the	 vicinity	 of	 the	wire	with	 its	 plane	 perpendicular	 to	 the	wire,	 as	 shown	 in
Figure	2.16.	The	loop	consists	of	two	circular	arcs	4–1	and	3–2	with	radii	a	and
b	 (a	<	b),	 connected	by	straight	 lines	1–2	and	3–4.	Both	arcs	have	a	common
center	located	on	the	wire.	The	angle	between	the	straight	lines	is	2φ.	Find	the
torque	acting	on	the	loop	by	the	wire.	Reminder:	Torque	or	moment	of	force,	M,
is	the	tendency	of	force	f	to	rotate	the	object	to	which	the	force	is	applied,	and
magnitude	of	the	torque	is	equal	to	M	=	fr	sin	φ,	where	r	is	the	vector	from	the
axis	of	rotation	to	the	point	of	force	application	and	φ	is	the	angle	between	the
force	vector	and	the	vector	r.	(Answer: M=μ0I1I2π(b−a)sinφ.)

FIGURE	2.15	Calculation	of	a	magnetic	field	of	a	solenoid.



FIGURE	2.16	Calculation	of	the	torque	acting	on	the	loop	1–2–3–4	by	the	magnetic	field
generated	by	current	I1.

2.8	A	ring	ABCD	consists	of	two	metal	half	rings	of	radius	a,	joined	at	points	A
and	C.	The	diameter	of	 the	wire’s	cross	section	of	 the	 lower	half	 ring	ADC	is
double	 that	 of	 the	 diameter	 of	 the	wire’s	 cross	 section	 of	 the	 upper	 half	 ring
ABC.	The	current	in	the	straight	sections	is	equal	to	I.	Find	the	magnitude	of	the
magnetic	 field	 at	 the	 center	 of	 the	 ring	 (point	 O	 in	 the).	 (Answer:  
B(0)=3μ020aI.)
2.9	A	 straight	 long	 thin	wire	 carrying	 a	 current	 I	 is	 surrounded	 by	 a	 cylinder
made	of	a	magnetic	material	of	uniform	permeability	κm.	A	solenoid	that	carries
a	current	I	is	wound	onto	the	outer	surface	of	the	cylinder	(see).	The	number	of
turns	per	unit	length	of	the	solenoid	is	equal	to	n.	Find	the	magnitude	of	the	net
magnetic	field	inside	and	outside	the	solenoid.	(Part  of the  answer:  B=μ0I2πr.)

FIGURE	2.17	Calculation	of	the	magnetic	field	of	two	semirings.

FIGURE	2.18	Calculation	of	the	magnetic	field	of	the	straight	wire	and	solenoid.



FIGURE	2.19	Calculation	of	the	magnetic	flux	through	the	frame	of	an	area	A	=	al.

FIGURE	2.20	Helical	path	of	the	electron	in	a	magnetic	field.

2.10	A	rectangular	frame	with	height	l	=	65.0	cm	and	width	a	is	placed	so	that
its	long	sides	are	parallel	to	an	infinitely	long,	straight	wire	that	carries	a	current
I	 =	 50.0	 A	 as	 shown	 in.	 What	 is	 the	 magnetic	 flux	 Φ	 through	 the	 frame?
(Answer:	Φ	=	4.50	μWb.)
2.11	An	electron	of	velocity	v	=	2.00	×	106	m/s	enters	a	uniform	magnetic	field
of	B	=	30.0	mT	at	an	angle	α	=	30°	to	the	direction	of	the	magnetic	field	lines.
Determine	the	radius	R	and	pitch	h	of	the	helical	path	followed	by	the	electron
().	(Answer:	R	=	0.19	mm	and	h	=	2.06	mm.)



3Maxwell’s	Equations	for	Electromagnetic
Fields

By	adding	one	additional	term	in	Ampere’s	law	and	combining	it	with	Gauss’s	law	for	the
electric	field,	Gauss’s	law	for	the	magnetic	field,	and	Faraday’s	law,	James	Clerk	Maxwell
created	 a	 complete	 theory	 of	 electromagnetic	 fields.	 Maxwell	 was	 able	 to	 explain	 all
available	 experimental	 facts	 related	 to	 electromagnetism	 on	 the	 basis	 of	 these	 four
equations,	which	were	known	collectively	as	Maxwell’s	equations.	These	equations	allow
us,	using	a	given	spatial	distribution	of	charges	and	currents	and	their	time	dependences,
to	find	the	electric	and	magnetic	fields	at	each	point	of	space	at	any	moment	of	time.

Maxwell’s	theory	was	the	greatest	contribution	to	the	development	of	classical	physics
and	allowed	to	describe	a	huge	range	of	phenomena,	beginning	from	the	electrostatic	field
of	static	charges	and	ending	with	the	electromagnetic	nature	of	light.	Maxwell’s	equations
form	 the	 basis	 for	 wave	 optics.	 Propagation	 of	 light	 in	 vacuum	 and	 in	 media	 can	 be
described	by	these	equations.

An	 important	 property	 of	 Maxwell’s	 equations	 is	 that	 they	 are	 invariant	 under	 the
Lorentz	transformations.	This	means	that	the	equations	have	the	same	form	in	all	inertial
coordinate	systems.	Nevertheless,	like	any	physical	theory,	Maxwell’s	theory	has	its	limits
of	applicability.	Here,	we	point	to	two	major	limitations.	First,	it	can	be	applied	only	if	the
distance	between	the	charges	exceeds	 the	 interatomic	distances	 in	a	medium,	 that	 is,	 the
distance	 between	 charges	 is	 larger	 than	 10−10	 m.	 Second,	 the	 frequency	 of	 the
electromagnetic	field	changes	should	not	exceed	1015	Hz	since	at	higher	frequencies,	the
quantum	 properties	 of	 radiation	 are	 revealed.	 In	 this	 chapter,	 we	 will	 briefly	 discuss
Maxwell’s	equations	and	will	apply	those	to	several	simple	problems.

3.1				FARADAY’S	LAW
In	 1831,	 the	 English	 scientist	 Michael	 Faraday	 discovered	 the	 important	 physical
phenomenon	 of	 electromagnetic	 induction,	 in	 which	 a	 magnetic	 field	 B	 produces	 an
electric	current	 in	a	closed	 loop,	 if	 the	magnetic	 flux	 through	 the	surface	area	of	a	 loop
changes	with	time.	An	electromotive	force	(emf)	generated	by	the	time-varying	magnetic
flux	and	an	electric	 current	 is	 induced	 in	 a	 closed	 loop.	Experiments	 show	 that	 the	 emf
generated,	 referred	 to	 as	 “induced	 emf,”	 is	 proportional	 to	 the	 rate,	 with	 which	 the
magnetic	flux	passing	through	the	loop	changes	with	time.

The	 absolute	 value	 of	 the	 induced	 emf	 in	 a	 loop	 is	 equal	 to	 the	 rate,	with	which	 the
magnetic	flux	passing	through	the	loop	changes	with	time:

Ei=−dΦdt (3.1)

This	is	known	as	Faraday’s	law.

The	magnetic	flux	passing	through	a	surface	covering	a	loop	is	defined	as



Φ=∫AB⋅dA=∫AB⋅n dA=∫ABn dA=∫AB cosα	dA, (3.2)

where

n	is	the	unit	vector	of	the	outward	normal	to	the	surface	element	dA
α	is	the	angle	between	vectors	B	and	n	(see	Figure	3.1)

FIGURE	3.1	To	the	calculation	of	magnetic	flux	passing	through	a	surface	A	of	the	closed
loop.

According	to	Equation	3.2,	a	change	dΦ	of	the	magnetic	flux	can	result	from	changes	of
the	magnitude	of	B	and/or	the	surface	area	A	and/or	the	relative	orientation	of	vectors	B
and	n.	As	we	already	mentioned	in	Chapter	2,	Weber	(1	Wb	=	1	T	⋅	m2)	 is	a	unit	of	 the
magnetic	flux	in	the	SI	units.

The	induced	emf	in	a	conducting	loop	results	in	the	appearance	of	an	induced	current	Ii.
The	direction	of	 this	 current	 is	governed	by	Lenz’s	rule:	 the	 current	 in	 the	 loop	 always
flows	in	such	a	direction	as	to	oppose	the	change	of	magnetic	flux	that	produced	it.	The
negative	sign	in	Equation	3.1	means	that	if	the	magnetic	flux	is	decreasing	(dΦ/dt<0),	then
Ei>	0	and	the	flux	generated	by	the	magnetic	field	of	the	induced	current	tries	to	increase
the	flux	Φ	and	thus	oppose	the	change.	If	dΦ/dt>0,	then	Ei>	0	and	the	flux	generated	by
the	magnetic	field	of	the	induced	current	tries	to	decrease	the	flux	Φ	and	thus	also	opposes
the	 change.	 It	 can	 be	 demonstrated	 that	 Faraday’s	 law	 in	 the	 form	 of	 Equation	 3.1	 is
compatible	with	 the	energy	conservation	law.	For	 this,	 let	us	consider	a	conducting	loop
with	a	movable	bridge	of	length	l	placed	in	a	uniform	magnetic	field	B	(see	Figure	3.2).
The	 loop	contains	an	external	 source	of	emf,	which	 results	 in	a	current	 I.	The	magnetic
force	acting	on	the	bridge	moves	it	by	a	distance	dx	during	time	interval.

In	 this	 case,	 the	 magnetic	 force	 performs	 work	 dW=FAdx=I  dΦ,	 where	 dΦ	 is	 the
magnetic	flux	through	the	area	traversed	by	the	moving	bridge	during	time	dt.	Let	R	be	the
resistance	 of	 the	 loop.	 According	 to	 the	 energy	 conservation	 law,	 the	 work	 done	 by	 a
current	source	in	time	dt dWsource=EI	dt	is	a	sum	of	work	spent	for	heating	the	resistor	R,
dWtherm	=	I2R	dt,	and	the	work	performed	by	Ampere’s	force,	that	is,

dWsource=dWtherm+dW.

This	relation	can	be	given	as

EI dt=I2R  dt+I dΦ.

Hence,

I=1R(E−dΦdt)=E+EiR, (3.3)



FIGURE	3.2	Illustration	of	work	performed	by	Ampere’s	force.

as	predicted	by	Kirchhoff’s	loop	rule	for	this	circuit.	The	right-hand	part	of	Equation	3.3
in	brackets	is	the	sum	of	the	emf’s	acting	in	the	loop.	They	are	the	emf	of	voltage	source	E
and	the	 induced	emf	Ei	given	by	Equation	3.1.	 If	we	have	a	 time-varying	magnetic	 flux
through	N	loops,	then

Ei=−ddt∑i=1NΦi=−dΦnetdt, (3.4)

where	Φnet	 is	 the	 net	 magnetic	 flux.	 Equation	 3.4	 is	 consistent	 with	 Faraday’s	 law.	 If
Φnet=NΦ,	Equation	3.4	can	be	written	as

Ei=−dΦnetdt=−d(NΦ)dt=−NdΦdt, (3.5)

that	is,	the	emf	is	proportional	to	the	number	of	loops	N.

Exercise	3.1
A	circular	copper	wire	coil	of	diameter	D	is	placed	in	a	uniform	magnetic	field	forming	an
angle	 α	 with	 the	 coil	 plane	 normal	 (see	 Figure	 3.1).	 The	magnetic	 field	 increases	 at	 a
constant	rate	b	(i.e.,	b	=	dB/dt).	Determine	the	charge	that	passes	through	a	cross	section
of	the	coil	in	a	time	interval	τ	if	the	wire	cross-sectional	area	is	equal	to	ACu.

Solution.	When	the	magnetic	field	changes	by	dB,	the	magnetic	flux	Φ	in	a	coil	changes
by

dΦdt=dBdtA cos α = bA cos α,

where	A	=	πD2/4	is	the	coil	area.	The	change	in	the	magnetic	flux	results	in	the	appearance
of	an	induced	emf	equal	to

Ei=−dΦdt=−dBdtA cos α=−bA cos α.

According	to	Ohm’s	law,	an	induced	current	is	generated	in	the	coil:

Ii=EiR=−bRA cos α.

The	charge	q	that	will	pass	through	any	cross	section	of	the	coil	during	time	Δt	is

q=|	IiΔt	|=|	Iiτ	|=bτRA cos α,

where	we	take	into	account	that	in	our	case,	Δt	=	τ.

The	coil	wire	resistance	has	the	equation	R=ρCuπD/ACu,	where	ρCu	is	the	resistivity	of
copper	and	πD	is	the	length	of	the	circular	resistor.	Thus,	we	have

q=bτACuD4ρCucos α.

Note	 that	 the	charge	per	unit	area	of	 the	wire	q/ACu	does	not	depend	on	 the	wire	cross-



sectional	area	ACu.

3.2				SELF-INDUCTANCE	AND	MUTUAL	INDUCTANCE
We	have	seen	 that	any	change	 in	 the	magnetic	 flux	passing	 through	a	 loop	results	 in	an
induced	 emf.	Self-inductance	 is	 a	 particular	 case	 of	 this	 phenomenon:	 a	 change	 in	 the
current	in	a	conducting	loop	generates	an	induced	emf	in	that	loop.

The	electric	current	 in	 the	 loop	generates	a	magnetic	 field	 through	 the	 loop,	which	 is
proportional	 to	 the	 current	 of	 the	 loop.	 The	 magnetic	 flux	 of	 this	 magnetic	 field	 is
proportional	to	the	magnetic	field	and,	hence,	to	the	current	in	the	loop,	that	is,	Φ	=	LI	(see
Figure	3.3).	Here,	L	is	known	as	the	inductance	of	the	loop.	This	coefficient	depends	on	a
shape	and	size	of	the	loop	and	on	the	magnetic	properties	of	the	surrounding	medium.	The
SI	 unit	 of	 inductance	 is	 the	 Henri	 (H):	 H	 =	Wb/A.	 For	 example,	 the	 inductance	 of	 a
solenoid	(see	Figure	2.6)	of	volume	Vol,	 length	 l,	cross-sectional	area	A,	 and	number	of
turns	N	in	the	air	is

L=μ0N2Al=μ0n2(Vol). (3.6)

where

Vol	is	the	solenoid	volume
n	 =	N/l	 is	 a	 number	 of	 turns	 per	 unit	 length	 (consult	 Figure	 2.6	 for	 a	 sketch	 of	 a
solenoid)

For	 a	 solenoid	 whose	 volume	 is	 filled	 by	 a	 core	 of	 magnetic	 permeability	 κm,	 the
inductance	is	increased	according	to	the	following	equation:

L=μ0κmN2Al=μ0κmn2(Vol). (3.7)

Taking	Faraday’s	law	into	account,	one	can	derive	an	expression	for	the	self-induced	emf:

Esi=−dΦdt=−ddt(LI)=−(dLdtI+LdIdt). (3.8)

If	L	is	constant,	then

Esi=−LdIdt. (3.9)

According	to	Lenz’s	rule,	the	negative	sign	indicates	that	the	induced	current	is	flowing	in
such	a	direction	as	to	oppose	the	initial	change	of	the	current.	The	self-induced	emf	in	a
loop	 tends	 to	maintain	 the	current	constant:	 that	 is,	 it	opposes	an	 increasing	current	and
enhances	a	decreasing	current.



FIGURE	3.3	Illustration	of	self-inductance	phenomenon.

Let	us	consider	two	nearby	stationary	loops	labeled	1	and	2.	In	this	case,	the	current	I1
in	loop	1	generates	a	magnetic	flux	Φ2	through	loop	2	(see	Figure	3.4).	The	magnetic	flux
is

Φ2=M21I1. (3.10)

Any	change	in	I1	generates	an	induced	emf	in	loop	2:

Ei2=−dΦ2dt=−M21dI1dt. (3.11)

Similarly,	 the	current	I2	 in	 loop	2	generates	a	magnetic	 flux	Φ1	 passing	 through	 loop	1.
This	flux	is	Φ1	=	M12I2	(see	Figure	3.4).	Any	change	in	the	current	I2	generates	an	induced
emf	in	loop	1:

Ei1=−dΦ2dt=−M12dI2dt. (3.12)

The	appearance	of	an	induced	emf	in	one	of	the	loops	due	to	a	current	change	in	the	other
is	 referred	 to	as	mutual	 inductance.	The	coefficients	M12	and	M21	 are	 called	 the	mutual
inductances	of	 the	 loops.	These	coefficients	depend	on	shapes,	 sizes,	mutual	position	of
loops,	 and	 on	 the	magnetic	 permeability	 of	 the	 surrounding	medium.	 In	 the	 absence	 of
ferromagnetic	 materials,	 these	 coefficients	 are	 equal,	 that	 is,	 M12	 =	 M21	 =	 M.
Transformers,	 which	 are	 devices	 that	 change	 the	 input	 voltage,	 are	 based	 on	 mutual
induction.	 In	 a	 transformer,	 an	 alternating	 current	 in	 one	 loop	 (known	 as	 the	 primary)
induces	an	alternating	current	in	another	loop	(generally	a	coil	known	as	the	“secondary”
that	has	a	common	core	with	the	primary).

Exercise	3.2
The	current	in	a	solenoid	of	inductance	L	is	changing	with	time	as	I=βt−γt3.	What	is	the
selfinduced	emf	in	the	solenoid	at	time	τ?

Solution.	According	to	Faraday’s	law,

Ei=−dΦdt.

Since	Φ	=	LI,	we	have

Ei=−LdIdt=−L(β−3γt2)=L(−β+3γτ2).

Here,	we	 assume	 that	L	 does	 not	 depend	 on	 the	magnetic	 field	 of	 the	 solenoid.	This
assumption	is	not	true	for	solenoids	that	contain	a	ferromagnetic	core.



FIGURE	3.4	Illustration	of	mutual	inductance	phenomenon:	current	I1	in	loop	1	generates
a	magnetic	flux	Φ2	through	loop	2	and	current	I2	in	loop	2	generates	a	magnetic	flux	Φ1
passing	through	loop	1.

3.3				MAGNETIC	FIELD	ENERGY
By	 analogy	 to	 the	 electric	 field	 energy	 stored	 in	 a	 charged	 capacitor,	 any	 loop	 (coil,
solenoid)	that	carries	a	current	flowing	in	its	turns	also	stores	magnetic	field	energy	in	the
space	occupied	by	the	magnetic	field.	A	conductor	carrying	an	electric	current	 is	always
surrounded	by	the	magnetic	field	that	is	generated	by	that	current.	The	work	spent	by	the
current	to	produce	the	magnetic	field	is	converted	into	the	magnetic	field	energy.

We	 have	 mentioned	 earlier	 that	 a	 loop	 with	 inductance	 L	 carrying	 a	 current	 I	 is
penetrated	by	 its	own	magnetic	 flux	Φ	=	LI.	For	a	small	change	dl	of	 the	current	 in	 the
loop,	the	magnetic	flux	changes	by	dΦ	=	L	dl.	To	change	the	magnetic	flux	by	dΦ,	work,

dW=I dΦ=LI dI,

must	be	done.	The	work	spent	to	change	the	current	in	the	loop	from	0	to	I	is

W=∫0ILI dI=LI22=Um. (3.13)

Here,	the	magnetic	field	energy	stored	in	the	magnetic	field	of	the	loop	is	given	by	one	of
the	following	equivalent	relations:

Um=LI22=Φ22L=IΦ2. (3.14)

The	magnetic	field	energy	is	a	function	of	 the	parameters	characterizing	this	field	in	the
surrounding	medium.	For	 this,	 let	us	consider	 the	magnetic	 field	 inside	a	 long	solenoid.
Introducing	 the	 relation	 for	 inductance	 of	 a	 solenoid	 defined	 by	 Equation	 3.7	 into
Equation	3.14,	we	obtain

Um=LI22=μ0κmN2A2lI2=12μ0κmn2I2(Vol), (3.15)

where	Vol	is	the	solenoid	volume.	Since	B=μ0κmnI	is	valid	for	an	ideal	solenoid,	then

Um=B22μ0κmVol. (3.16)

Considering	 the	relation	of	 the	magnetic	field	 to	 the	magnetic	field	 intensity	B=μ0κmH,
the	expression	for	the	field	energy	in	a	solenoid	can	be	written	as

Um=B22μ0κmVol=μ0κmH22Vol=B⋅H2Vol. (3.17)

The	magnetic	field	of	a	solenoid	is	uniform	and	is	confined	in	its	interior.	Therefore,	the
energy	 is	 enclosed	 in	 the	 solenoid	 volume	 and	 distributed	 within	 it	 with	 a	 constant
magnetic	energy	density	um	measured	in	J/m3:

um=UmVol=B22μ0κm=μ0κmH22=B⋅H2. (3.18)



Relation	(3.18)	for	the	magnetic	energy	density	has	a	similar	form	to	the	expression	for	the
electric	energy	density	except	 for	 the	constants.	This	equation	 is	obtained	 for	a	uniform
field,	 but	 it	 is	 valid	 for	 nonuniform	 fields	 as	 well.	 In	 the	 last	 case,	 B,	H,	 and	 um	 are
functions	of	coordinates.

Exercise	3.3
Consider	 a	 solenoid	 of	 length	 l	 and	 cross-sectional	 area	 A,	 containing	 N	 turns.	 The
magnetic	field	inside	the	solenoid	is	B.	What	are	the	coil	current	I	and	its	magnetic	field
energy	Um?

Solution.	The	magnetic	 field	of	a	solenoid	 is	given	by	B=μ0κmnI,	where	n	=	N/l	 is	 the
number	of	turns	per	coil	length	and	I	is	the	current	in	a	coil.	Hence,	the	current	is

I=Bμ0κmn.

The	magnetic	energy	Um	of	a	coil	with	current	I	is	given	by	the	relation

Um=LI22.

Here,	L	is	the	coefficient	of	inductance	in	a	coil	defined	by	Equation	3.7:

L=(μ0κmn2)⋅Vol,
where	Vol	=	lA	is	the	volume	inside	the	coil.	Taking	into	consideration	the	energy	relations
for	a	coil,	we	arrive	at

Um=12μ0κmn2(Vol)I2=12B2μ0κm⋅Vol.

3.4				TRANSIENT	PROCESSES	IN	CIRCUITS	WITH
CAPACITORS	AND	INDUCTORS

For	the	case	when	Ei	is	equal	to	zero,	Equation	3.3	reduces	 to	Ohm’s	 law	I=E/R	for	 the
simplest	 circuit	 that	 contains	 just	 a	 resistor	 R	 and	 a	 voltage	 source	 with	 zero	 internal
resistance	 and	 emf	 equal	 to	 E.	 Ohm’s	 law	 in	 this	 form	 is	 correct	 for	 a	 direct	 current
conditions	when	the	emf	does	not	depend	on	time.	If	E	depends	on	time	and	the	current
will	follow	the	change	of	E	and	Ohm’s	law	can	be	applied	at	each	instant	of	time	t,	then
we	have	I(t)=E(t)/R.	In	circuits	that	contain	capacitors	and	inductors	and	a	time-varying	E,
Ohm’s	 law	must	 be	modified.	 In	 this	 section,	we	discuss	 the	 limitations	 on	 the	 relation
I(t)=E(t)/R	 and	 introduce	 criteria	when	 currents	 can	be	 referred	 to	 as	 slowly	varying	or
quasi	 stationary.	Let	us	consider	 the	process	of	establishing	a	current	 in	a	circuit	with	a
resistor	and	a	capacitor	and	in	a	circuit	with	a	resistor	and	a	coil.

1.	We	start	with	a	circuit	that	contains	a	capacitor	with	capacitance	C,	a	resistor	R	(which
includes	the	internal	resistance	of	the	voltage	source),	a	voltage	source	with	emf	E,	and	a
switch	S	(see	Figure	3.5).	If	the	switch	S	is	in	position	1,	the	capacitor	is	being	charged	by
the	 voltage	 source.	 Turning	 the	 switch	 to	 position	 2	 leads	 to	 the	 discharging	 of	 the
capacitor	 through	 the	 resistor.	 The	 processes	 of	 capacitor	 charging	 and	 discharging	 are
nonstationary	electrical	processes	characterized	by	a	continuous	variation	of	the	current	in
the	 circuit	 with	 time.	 Let	 us	 define	 the	 characteristic	 time	 τ	 of	 capacitor	 charging	 and
discharging.	We	start	with	the	process	of	capacitor	charging	in	the	circuit	shown	in	Figure



3.5.	Kirchhoff’s	loop	rule,	which	states	that	the	algebraic	sum	of	voltage	drops	around	any
closed	loop	is	equal	to	the	algebraic	sum	of	emf	in	a	loop,	applied	to	the	upper	branch	of
the	loop	(Figure	3.5)	yields

FIGURE	3.5	Circuit	for	the	illustration	of	charging	and	discharging	of	a	capacitor.

RI(t)+VC(t)=E, (3.19)

where

I(t)	is	the	instantaneous	current	in	the	circuit
VC(t)	is	the	instantaneous	voltage	across	the	capacitor

Expressing	I(t)	and	VC(t)	in	terms	of	the	instantaneous	charge	q(t)	on	the	capacitor	plates,
we	have

I(t)=dq(t)dt,   VC=q(t)C. (3.20)

If	 we	 substitute	 Equation	 3.20	 into	 Equation	 3.19,	 we	 have	 the	 following	 differential
equation	for	the	capacitor	charge:

dqdt+qRC=ER. (3.21)

This	must	satisfy	the	initial	condition	at	t	=	0	as	we	put	the	switch	S	in	position	1:

q(0)=0. (3.22)

The	solution	of	Equation	3.21	that	satisfies	the	initial	condition	(3.22)	is

q(t)=CE(1−e−t/τ), (3.23)

Here,	τ	=	RC	is	a	characteristic	time	of	the	circuit	known	as	the	“time	constant”	of	the	RC
circuit.

To	find	I(t)	and	VC(t),	we	use	Equation	3.23	and	relations	(3.20):

I(t)=dq(t)dt=ERe−t/τ=I0e−t/τ,   VC(t)=q(t)C=E(1−e−t/τ), (3.24)

where	I0	is	the	current	in	the	circuit	at	t	=	0.	It	follows	from	this	equation	that	the	current



is	maximum	at	t	=	0	and	it	vanishes	asymptotically	with	time;	the	voltage	and	the	charge
are	zero	at	t	=	0	and	they	both	reach	asymptotically	their	corresponding	maximum	values
VC	=	E	and	q=q0=CE	(Figure	3.6a).

The	capacitor	discharging	takes	place	when	a	switch	S	is	turned	to	position	2	after	the
capacitor	has	been	charging	for	a	long	time.	In	this	case,	Equation	3.20	remains	the	same,
but	 in	 the	 right-hand	 part	 of	 Equation	 3.21,	 E	 is	 equal	 to	 zero,	 so	 we	 need	 to	 solve
equation

dqdt+qτ=0. (3.25)

The	initial	condition	for	this	is

q0=q(t=0)=CE. (3.26)

The	solution	of	Equation	3.25	that	satisfies	the	initial	condition	is

q(t)=CEe−t/τ=q0e−t/τ. (3.27)

Taking	into	account	Equation	3.20,	one	can	see	that	the	discharging	current	maintains	the
same	time	dependence	as	the	charging	current:

I(t)=dq(t)dt=−ERe−t/τ=−I0e−t/τ. (3.28)

The	 results	 obtained	 earlier	 show	 that	 the	 charging	 and	 discharging	 processes	 of	 the
capacitor	C	through	the	resistor	R	do	not	happen	instantaneously	but	instead	have	specific
time	dependence.	The	timescale	of	establishing	equilibrium	is	given	by	the	parameter	τ	=
RC,	referred	to	as	the	time	constant	of	the	RC	circuit.	The	constant	τ	is	the	time	required
for	the	capacitor	voltage	and	charge	to	decrease	by	a	factor	e	after	the	emf	is	switched	off.
Here,	e	is	the	basis	of	natural	logarithms.

Note	that	the	current	in	Equation	3.27	has	a	sign,	which	is	opposite	to	that	of	the	current
in	 Equation	 3.24	 (this	 is	 also	 shown	 in	 Figure	 3.6b).	 This	 indicates	 that	 the	 discharge
current	is	flowing	in	a	direction	opposite	to	the	capacitor	charging	current.

2.	Similar	processes	are	observed	for	a	circuit	that	contains	an	inductor	and	a	resistor	(RL
circuit).	Let	us	substitute	the	capacitor	in	a	circuit	in	Figure	3.5	with	a	coil	of	inductance	L
(Figure	3.7).	 If	 a	 switch	 S	 is	 closed,	 the	 upper	 branch	 of	 the	 circuit	 contains	 a	 voltage
source	 that	 generates	 the	 current	 in	 the	 circuit.	According	 to	Kirchhoff’s	 loop	 rule,	 this
process	is	described	by	the	equation



FIGURE	 3.6	 Dependence	 of	 current,	 charge,	 and	 voltage	 on	 time	 for	 the	 capacitor
charging	(a)	and	discharging	(b).

FIGURE	 3.7	 Circuit	 for	 the	 illustration	 of	 transition	 processes	 in	 a	 circuit	 with	 an
inductor.

RI(t)=E+EL(t), (3.29)

where	the	second	term	in	the	right-hand	part	of	the	equation	is	the	self-induced	emf	across
the	coil:	EL(t)=−L(dI/dt).	Hence,	Equation	3.28	takes	the	form

dIdt+RLI(t)=EL. (3.30)

This	equation	is	similar	to	Equation	3.21	describing	the	capacitor	charging,	except	that	the
current	I(t)	is	the	variable	here.

The	initial	condition	for	Equation	3.29	is	like	Equation	3.22:

I(t=0)=0, (3.31)

And	the	solution	(compare	it	with	Equation	3.23)	is

I(t)=ER(1−e−t/τ)=Im(1−e−t/τ),    τ=LR, (3.32)

where	 the	 time	 constant	 is	 τ	 =	L/R	 and	 the	maximum	 value	 of	 the	 current	 is	 Im=E/R,
which	corresponds	to	the	steady-state	current	Im	 that	will	 flow	in	 the	circuit	after	 t	≫	 τ.
The	 dependence	 of	 the	 current	 on	 time	 shown	 by	 curve	 1	 in	 Figure	 3.8	 resembles	 the
dependence	of	charge	on	time	shown	in	Figure	3.6	for	the	RC	circuit.

Similarly,	one	can	obtain	an	expression	describing	the	circuit	current	after	the	switch	is
turned	 to	 position	 2,	 that	 is,	we	 need	 to	 solve	Equation	3.30	with	 ε	 =	 o	 (compare	with



Equation	 3.25).	 Here,	 the	 initial	 current	 in	 a	 circuit	 is	 the	 current	 established	 before
switching,	that	is,	I(0)	=	Im	and	the	solution	is

I(t)=Ime−t/τ=ERe−t/τ. (3.33)

In	 the	case	of	 the	 inductor,	 switch	on	and	switch	off	 currents	are	 in	 the	 same	direction;
compare	Equation	3.32	with	Equation	3.33.	The	dependence	of	current	on	time	is	shown
by	curve	2	in	Figure	3.8.

FIGURE	3.8	Dependence	of	current	on	time	as	the	switch	S	on	Figure	3.7	is	switched	in
position	1	(curve	1)	and	in	position	2	(curve	2).

The	two	examples	considered	earlier	demonstrate	 that	 the	behavior	of	a	circuit	with	a
capacitor	 (RC	circuit)	and	an	 inductor	 (RL	circuit)	 is	determined	by	Equations	3.23	 and
3.32.	 If	 the	 emf	E	varies	with	 time	with	 an	angular	 frequency	ω	 such	 that	ωτ	≪	 1,	 the
current	 follows	 the	 emf	E	 (i.e.,	 I(t)	 =E(t)/R	 )	 and	 such	 condition	 is	 referred	 to	 as	 quasi
stationary.	In	contrast,	 if	ωτ	≥	1,	 the	current	does	not	follow	the	variation	of	 the	emf.	A
sinusoidal	current	with	angular	frequency	ω	is	known	as	alternating	current	(AC),	which
we	consider	separately.

Exercise	3.4
At	what	time	after	the	switch	is	closed	(position	1)	will	the	current	in	an	RL	circuit	be	half
of	the	steady-state	current?

Solution.	According	to	Equation	3.32,	we	can	write	the	following	time	dependence	for	a
current	in	the	circuit:

I(t)=Im(1−e−t/τ).

We	require	that	I(t)=Im/2;	thus,	we	can	write

I(t)Im=1−e−t/τ=12,   e−t/τ=12.

Taking	the	logarithm	of	this	relation	yields

tτ=ln2  or   t=τ⋅ln2=LRln2=0.69LR.

3.5				DISPLACEMENT	CURRENT
In	 the	 previous	 section,	 we	 demonstrated	 that	 charging	 a	 capacitor	 through	 a	 resistor
results	 in	 a	 current	 that	 depends	on	 time,	Equation	3.24.	However,	 the	 electrons	 cannot
travel	from	one	plate	to	another,	since	the	capacitor	itself	is	a	break	in	the	circuit	(there	is
an	 insulator	or	vacuum	in	 the	space	between	 the	plates).	Experiments	show	that	when	a
current	 flows	 in	 the	 circuit,	 a	 magnetic	 field	 is	 generated	 between	 the	 capacitor	 plates



(Figure	3.9).

To	determine	the	quantitative	relations	between	the	time-varying	electric	field	and	the
magnetic	 field	 induced	 by	 it,	 James	 Clerk	 Maxwell	 introduced	 the	 concept	 of
displacement	 current	 and	 described	 correctly	 the	 connection	 between	 electric	 and
magnetic	fields	under	time-varying	conditions.	In	a	circuit	with	a	capacitor,	the	conduction
currents	 that	 flow	 in	 and	 out	 of	 the	 connecting	wires	 are	 replaced	 by	 the	 displacement
currents	in	the	space	between	the	plates.	A	time-varying	electric	field	produces	the	same
magnetic	field	as	generated	in	the	presence	of	a	conduction	current	between	the	plates.

FIGURE	3.9	Calculation	of	a	displacement	vector	(a)	and	displacement	current	(b),	(c)	in
a	capacitor.

As	it	was	discussed	in	Chapter	1	(see	Equation	1.33),	the	electric	field	of	a	capacitor	is
concentrated	between	the	charged	plates	of	the	capacitor	and	is	equal	to	zero	outside	of	the
capacitor.	Using	Gauss’s	law	of	Equation	1.80,	we	choose	the	closed	surface	in	the	form
of	the	cylinder	with	the	base	areas	dA	parallel	to	the	plate	of	the	capacitor	as	it	is	shown	in
Figure	3.9a.	As	the	displacement	vector	has	only	one	component	Dn	perpendicular	to	the
surface	of	the	capacitor	and	to	dA,	Equation	1.80	determines	that	Dn	=	σs,	where	σs	is	the
surface	charge	density	on	the	plate	of	the	capacitor.	The	absolute	value	of	the	total	charge
on	each	plate	q=σsA,	where	A	is	the	plate	area.	Hence,	the	displacement	current	is

Ids=∂q∂t=∂∂t(Aσs)=A∂σs∂t=A∂D∂t, (3.34)

that	 is,	 the	 displacement	 current	 is	 proportional	 to	 the	 rate	 at	 which	 the	 electric
displacement	vector	 changes.	 Introducing	 the	vector	of	 the	displacement	current	density
jds	=	Ids/A,	we	arrive	at	the	following	vector	relation	for	the	displacement	current	density:

jds=∂D∂t. (3.35)

The	magnetic	field	B	produced	by	the	displacement	current	is	connected	to	the	direction
of	vector	∂D/∂t	by	the	right-hand	rule	as	shown	in	Figure	3.9b	and	c.

Exercise	3.5
An	alternating	 current	 voltage	V(t)=V0 cos(ωt)	 is	 applied	 across	 the	 plates	 of	 a	 parallel
plate	capacitor.	Find	the	time	dependence	of	the	displacement	current	density	in	the	space
between	 the	 capacitor	 plates	 if	 the	 distance	 between	 the	 plates	 is	 equal	 to	d.	The	 space
between	the	plates	is	completely	filled	with	a	dielectric	of	permittivity	ε = ε0κ.

Solution.	As	we	indicated	earlier,	the	displacement	current	Ids	is	equal	to	the	conduction
current	I,	so	the	current	density	jds	=	I/A,	where	A	is	the	capacitor	area.	The	current	I	of	a



capacitor	with	a	reactance	XC	is	given	by	Ohm’s	law	for	alternating	current:

I(t)=V(t)XC.

The	capacitive	resistance	(reactive)	XC	is	determined	by	the	equation

XC=1iωC=−1ωC,

where	the	imaginary	unit	can	be	presented	as

i=cos(π2)+i sin(π2)=exp(iπ2).

As	V(t)=V0 cos(ωt)=Re[	V0 exp(iωt)	],	we	can	write	down	for	the	current

I(t)=Re[	V(t)XC	]=V0ωC Re[	exp(iωt)exp(iπ2)	]           =V0ωCRe[	expi(ωt+π2)	]=V0ωC 
cos(ωt+π2)=−V0ωC sin(ωt).

As	we	see	from	the	previous	equation,	the	current	and	voltage	are	not	in	phase	but	rather
shifted	by	Δφ=π/2.	Hence,

jds(t)=I(t)A=−(V0ωCA)sin(ωt).

The	capacitance	is	given	by

C=κε0Ad,

Since,	in	our	case,	the	voltage	varies	according	to	V(t)=V0 cos(ωt),	the	time	dependence
of	the	displacement	current	is	expressed	as

jds(t)=−ωκε0d⋅V0 sin(ωt).

3.6				MAXWELL’S	EQUATIONS
Maxwell’s	equations	are	the	equations	of	classical	electrodynamics,	and	they	describe	all
electromagnetic	 phenomena.	 In	 particular,	Maxwell’s	 equations	 describe	mathematically
the	experimental	 laws	of	Coulomb,	Ampere,	and	Faraday.	As	mentioned	earlier,	 a	 time-
varying	magnetic	field	induces	an	electric	filed	and	a	time-varying	electric	field	induces	a
magnetic	field.	Being	simultaneously	generated,	these	fields	can	exist	independently	of	the
charges	or	currents	from	which	they	originate.	The	transformation	of	one	field	into	another
results	in	the	propagation	of	these	fields	in	space.	The	displacement	current	introduced	by
Maxwell	 allows	 creating	 a	 unified	 theory	 of	 the	 electric	 and	 magnetic	 phenomena
described	by	the	set	of	equations	known	as	Maxwell’s	equations.	These	equations,	as	they
were	 formulated,	not	only	provided	an	explanation	of	well-known	electric	and	magnetic
phenomena	 but	 also	 predicted	 novel	 effects,	 whose	 existence	 was	 confirmed
experimentally	later.

Maxwell’s	equations	include	the	following	four	equations	that	can	be	represented	either
in	integral	or	in	differential	form:

1. ∮SD⋅dA=∫Vρd(Vol),                             ∇⋅D=ρ,2. ∮LH⋅dl=∫Aj⋅dA+ddt∫AD⋅dA,           
∇×H=j+∂D∂t,3. ∮LE⋅dl=−ddt∫AB⋅dA,                           ∇×E=−∂B∂t,4. 

∮SB⋅dA=0,                                                ∇⋅B=0.
(3.36)

Before	discussing	Maxwell’s	equations,	we	would	like	to	indicate	that	the	fields	included



in	Maxwell’s	equations	are	not	independent.	There	is	a	relationship	between	them	defined
by	the	three	constitutive	equations	that	for	isotropic	media	take	the	form

D=κε0E,  B=κmμ0H,    j=σE, (3.37)

where	σ	is	the	conductivity	of	the	medium.	Generally,	the	material	parameters	κ,	κm,	and	σ
depend	 on	 both	 the	 properties	 of	 the	 substance	 and	 external	 parameters	 such	 as
temperature,	 frequency,	 and	 electric	 and	 magnetic	 fields.	 In	 most	 cases,	 the	 material
parameters	can	be	considered	independent	of	the	magnitude	of	the	external	fields.	In	this
case,	the	constitutive	equations	(3.37)	are	linear.	Media	with	linear	constitutive	equations
are	called	 linear	media.	Nonlinearity	 in	most	media	occurs	only	 in	 the	presence	of	very
strong	fields	and	in	due	course,	we	will	define	more	precisely	what	we	mean	by	“strong
fields.”

Maxwell’s	 first	equation	 expresses	Gauss’s	 law	for	 the	electric	 field:	 the	electric	 flux
through	a	closed	surface	is	equal	to	the	net	charge	inside	that	surface.

Maxwell’s	second	equation	is	the	generalized	Ampere’s	law.	This	equation	shows	that
the	magnetic	 field	 can	 be	 generated	 either	 by	moving	 charges	 (electric	 currents)	 or	 by
time-varying	electric	fields.

Maxwell’s	third	equation	shows	that	not	only	the	electric	charges	but	also	time-varying
magnetic	 fields	 can	 be	 the	 source	 of	 an	 electric	 field.	 So,	 the	 total	 electric	 field	E	 has
component	EQ	that	can	be	produced	by	a	system	of	charges	and	component	EB	that	can	be
produced	by	the	time-varying	magnetic	field:	E=EQ+EB.

Maxwell’s	fourth	equation	is	Gauss’s	law	for	the	magnetic	field.	It	states	that	there	are
no	magnetic	monopoles	in	nature	or	equivalently	that	the	magnetic	field	lines	form	closed
loops.

Maxwell’s	equations	are	not	symmetric	with	respect	to	the	electric	and	magnetic	fields.
This	 is	 due	 to	 the	 fact	 that	 there	 are	 electric	 but	 no	 magnetic	 charges	 in	 nature.	 The
differential	 forms	 of	 Maxwell’s	 equations	 are	 easily	 obtained	 from	 the	 equations	 in
integral	 form.	 For	 this,	 we	 have	 to	 employ	 Gauss’s	 and	 Stokes’	 theorems	 of	 vector
analysis,	respectively:

∫AG⋅dA=∫Vol∇⋅Gd(Vol),   ∫LG⋅dl=∫A∇×G⋅dA. (3.38)

where	G	is	any	vector.

Maxwell’s	equations	in	differential	form	describe	the	electromagnetic	field	at	each	point
in	space.	If	the	charges	and	currents	are	continuously	distributed	in	space,	the	two	forms
of	Maxwell’s	equations—integral	and	differential—are	equivalent.	However,	if	there	is	a
surface,	on	which	the	properties	of	the	medium	or	fields	change	abruptly,	the	integral	form
of	the	equations	should	be	used	as	these	equations	are	more	general.

Equations	 3.37	 is	 valid	 for	 isotropic	 media,	 whose	 properties	 are	 identical	 in	 all
directions,	and	for	which	the	parameters	κ,	κm,	and	σ	are	scalar	quantities.	In	these	media,
the	 direction	 of	 the	 vectors	D,	 B,	 j	 coincides	 with	 the	 direction	 of	 vectors	 E,	 H,	 E,
respectively,	while	this	is	not	the	case	in	anisotropic	media.	A	medium	is	homogeneous	if



the	 parameters,	 κ,	 κm,	 and	 σ,	 are	 the	 same	 all	 over	 the	 considered	 volume.	 If	 they	 are
functions	of	the	coordinates,	the	medium	is	inhomogeneous.

In	what	 follows,	we	discuss	 typical	values	of	material	parameters	κ,	κm,	 and	σ	 in	 the
limit	of	low	frequencies.	The	dielectric	constant	for	all	dielectrics	is	greater	than	unity.	For
air,	we	 have	 κ	≅	 1,	 that	 is,	 κ	 is	 very	 close	 to	 the	 value	 of	 the	 dielectric	 permittivity	 of
vacuum.	For	water,	glass,	and	ceramics,	they	are	κ	≈	81,	κ	≈	4,	and	κ	≈	6.5,	respectively.
For	organic	dielectrics,	they	are	κ	=	2	–	3.

The	 magnetic	 permeability	 of	 free	 space	 is	 κm	 =	 1	 +	 χ	 =	 1,	 that	 is,	 the	 magnetic
susceptibility	of	free	space	is	zero:	χ	=	0.	For	diamagnetic	materials,	χ	is	negative	and	its
absolute	 value	 is	 small:	 χ	 ~	 −10−5	 (e.g.,	 for	 copper,	 we	 have	 κm	 =	 0.99999044).	 For
paramagnetic	 materials,	 χ	 is	 positive	 and	 its	 value	 is	 small:	 χ	 ~	 10−3	 –	 10−5	 (e.g.,	 for
aluminum,	we	 have	 κm	 =	 1.000022).	 For	 ferromagnets	 or	 ferrites,	 χ	≫	 1	 and	 κm	≫	 1;
moreover,	κm	depends	strongly	on	frequency	and	on	magnetic	field	intensity.

Metals	 exhibit	 high	 conductivity.	 The	 best	 metal	 conductors	 in	 order	 of	 decreasing
conductivity	with	the	following	values	of	σ:	(6.17,	5.8,	4.1,	and	3.72)	×	107	S/m	are	silver,
gold,	copper,	and	aluminum.

For	static	fields,	Maxwell’s	equations	take	the	form

1. ∮SD⋅dA=∫VρdV,           ∇⋅D=ρ,2. ∮LH⋅dl=∫Aj⋅dA,           ∇×H=j,3. 
∮LE⋅dl=0,                        ∇×E=0,4. ∮SB⋅dA=0,                      ∇⋅B=0. (3.39)

This	 system	of	 equations	 (in	differential	 form)	 is	used	 to	 find	 the	 electric	 and	magnetic
fields	and/or	current	and/or	charge	distribution	in	different	problems	of	electromagnetism
that	are	time	independent.

The	 second	 of	 Maxwell’s	 equations	 in	 Equations	 3.36	 is	 consistent	 with	 the	 charge
conservation	that	relates	the	charge	density	ρ(r)	with	the	current	density	j(r)	at	each	point
of	space.	To	verify	this,	let	us	multiply	the	right-	and	left-hand	parts	of	the	equation

∇×H=j+∂D∂t
by	 the	operator	∇	 and	 then	change	 the	order	of	 time	and	 space	derivatives	 in	 the	 right-
hand	side:

∇⋅(∇×H)=∂∂t∇⋅D+∇⋅j. (3.40)

In	this	equation,	the	left-hand	side	is	equal	to	zero	due	to	a	vector	identity:

∇⋅(∇×H)=0. (3.41)

Replacing	∇	⋅	D	by	ρ	(see	first	Equation	3.36	in	the	right-hand	part	of	Equation	3.40),	we
get

∂ρ∂t+∇⋅j=0. (3.42)



This	 is	 referred	 to	 as	 the	 continuity	 equation.	 If	 we	 choose	 a	 point	 r	 surrounded	 by	 a
closed	surface	A	and	integrate	Equation	3.42	over	the	volume	V	enclosed	by	the	surface,
we	get

∂∂t∫Volρ(r)dr=−∫Vol∇⋅jdr. (3.43)

The	 left-hand	 part	 is	 equal	 to	 the	 rate	 of	 change	 of	 the	 total	 charge	Q	 enclosed	 by	 the
surface	 A.	 Using	 Gauss’s	 theorem,	 the	 volume	 integral	 in	 the	 right-hand	 part	 can	 be
converted	into	an	integral	over	surface	A,	which	encloses	that	volume,	whereby	we	obtain

dQdt=−∮Aj⋅dA=−IA, (3.44)

where	 IA	 is	 the	 total	 current	 through	 the	 surface.	 This	 equation	 states	 that	 the	 rate	 of
change	of	the	charge	inside	a	closed	surface	is	equal	to	the	total	current	flowing	through
the	surface.

In	vacuum,	in	the	absence	of	charges	and	currents,	the	system	of	equations	(3.36)	takes
the	form

1. ∮SD⋅dA=0,                             ∇⋅D=0,2. ∮LH⋅dl=ddt∫AD⋅dA,           ∇×H=∂D∂t,3. 
∮LE⋅dl=−ddt∫AB⋅dA,        ∇×E=−∂B∂t,4. ∮SB⋅dA=0,                             ∇⋅B=0. (3.45)

As	will	be	shown	in	the	following	discussion,	the	differential	form	of	Maxwell’s	equations
leads	to	a	wave	equation	that	has	plane	monochromatic	waves	as	a	particular	solution.	The
vectors	of	the	electric	and	magnetic	fields	are	perpendicular	to	each	other	and	also	to	the
direction	of	the	wave	propagation.	The	oscillations	of	both	fields	are	in	phase.	The	wave
propagates	in	vacuum	with	a	speed	of	light	c=1/ε0μ0  or c≅2.998×108 m/s.

Exercise	3.6
Write	down	the	differential	system	of	equations	(3.36)	using	Cartesian	coordinate	system.

Solution.	The	system	of	equations	(3.36)	has	two	scalar	and	two	vector	equations:

∇⋅D=ρ,∇⋅B=0,∇×H=j+∂D∂t,∇×E=−∂B∂t.
The	first	two	equations	take	the	form

∂Dx∂t+∂Dy∂t+∂Dz∂t=ρ,∂Bx∂t+∂By∂t+∂Bz∂t=0.

The	 remaining	 two	 equations	 are	 vector	 equations,	 and	 therefore,	 each	 of	 them	 can	 be
presented	by	 three	 equations	 that	 are	 projections	of	 the	vector	 equations	on	 each	of	 the
Cartesian	coordinate	axis:

∂Hz∂y−∂Hy∂z=jx+∂Dx∂t,     ∂Ez∂y−∂Ey∂z=−∂Bx∂t,∂Hx∂z−∂Hz∂x=jy+∂Dy∂t,     ∂Ex∂z
−∂Ez∂x=−∂By∂t,∂Hy∂x−∂Hx∂y=jz+∂Dz∂t,     ∂Ey∂x−∂Ex∂y=−∂Bz∂t.

In	 these	 equations,	 ρ=ρ(t;x,y,z)  and  jx=jx(t;x,y,z), jy=jy(t;x,y,z)   and  jz=jz(t;x,y,z)	 are
components	of	vector	j(t;	x,	y,	z).

PROBLEMS



3.1	 A	 coil	 containing	 N	 =	 1000	 turns	 rotates	 with	 constant	 frequency
f=ω/2π=10.0 s−1	in	a	uniform	magnetic	field	B	=	0.10	T.	The	area	of	each	turn,
A,	 is	 equal	 to	 150	 cm2.	 Find	 the	 instantaneous	 value	 of	 the	 induced	 emf,	 Ei,
corresponding	to	a	rotation	angle	of	the	coil	equal	to	30°.	(Answer:	Ei	=	47.1	V.)
3.2	When	the	rate	of	current	change	with	time	in	a	solenoid	is	equal	to	50	A/s,	a
self-induced	emf	is	generated	across	its	ends:	Ei	=	0.08	V.	Find	the	inductance	L
of	the	solenoid.	(Answer:	L	=	1.60	mH.)
3.3	A	horizontal	conducting	rod	with	a	mass	m	and	length	l	can	slide	under	the
action	 of	 gravity	 without	 friction	 and	 without	 breaking	 the	 electrical	 contact
with	two	vertical	conducting	rails.	A	source	of	emf	E	is	connected	as	shown	in
Figure	3.10.	A	uniform	magnetic	 field	 is	applied	perpendicular	 to	 the	plane	of
the	rails.	Find	the	ratio	of	resistors	R1	and	R2	of	resistor	Rx	when	the	horizontal
rod	 moves	 with	 uniform	 velocity	 v	 in	 opposite	 directions	 (up	 and	 down,
respectively).	Neglect	the	self-inductance	of	the	circuit,	resistance	of	the	rod	and
rails,	and	the	internal	resistance	of	the	emf	E.	(Answer:  R1R2=E−BlvE+Blv.)
3.4	The	winding	of	a	solenoid	consists	of	a	single	layer	of	tightly	wound	turns	of
copper	wire	with	a	diameter	d	=	0.20	mm.	The	diameter	of	the	solenoid	is	d1	=
5.00	cm.	The	current	that	flows	through	a	solenoid	at	t	=	0	is	I0	=	1.00	A.	Find
the	total	charge	q	that	flows	through	the	coil	of	the	solenoid	if	at	t	=	0,	the	coil	is
short-circuited.	Hint:	The	length	of	the	solenoid,	the	length	of	the	copper	wire,
and	 the	 number	 of	 turns	 in	 the	 solenoid	 will	 not	 enter	 into	 the	 final	 answer
taking	 into	account	 that	 the	 length	of	 the	solenoid	 is	equal	 to	a	product	of	 the
wire	diameter	and	 the	 total	number	of	 turns	 in	 the	solenoid.	 (Answer:	q	 ≈	 145
μC.)
3.5	A	horizontal	metal	rod	of	length	l	=	50.0	cm	rotates	about	a	vertical	axis	that
passes	through	one	of	its	ends	with	a	frequency	f	=	2.00	Hz,	as	shown	in	Figure
3.11.	The	vertical	component	of	the	magnetic	field	intensity	of	the	Earth	is	H	=
40.0	A/m.	Find	 the	potential	difference	between	 the	ends	of	 the	 rod.	 (Answer:
Δφ	=	79.0	mV.)
3.6	Find	the	magnitude	of	the	displacement	current	between	the	square	plates	of
a	parallel	plate	capacitor	 filled	with	air	 (plate	side	a	=	5.00	cm)	 if	 the	electric
field	 between	 the	 plates	 varies	with	 time	 at	 the	 rate	 dE/dt	 =	 4.52	MV/m	 ⋅	 s.
(Answer:	Displacement	current	Ids	=	0.10	μA.)
3.7	 In	 an	 ideal	 oscillatory	 LC	 circuit	 with	 coil	 inductance	 L	 =	 0.20	 H,	 the
oscillation	 amplitude	 of	 the	 current	 is	 Im	 =	 40.0	 mA.	 Find	 the	 energy	 of	 the
electric	field	of	the	capacitor	at	the	moment	when	the	instantaneous	value	of	the
current	is	half	the	current	amplitude.	(Answer:	WC	=	1.20	×	10−4	J.)



FIGURE	3.10	Calculation	of	the	resistors	Rx	=	R1	and	Rx	=	R2	for	the	bar	moving	up	and
down,	respectively.

FIGURE	3.11	Calculation	of	the	emf	across	a	rod	of	length	l	that	rotates	about	a	vertical
axis	passing	through	one	of	its	ends	in	the	magnetic	field	of	the	Earth.

3.8	 A	 sinusoidal	 voltage	 V(t)=Vm sin(ωt)	 with	 angular	 frequency	 ω	 and
amplitude	 Vm	 is	 applied	 across	 a	 circuit	 that	 consists	 of	 a	 resistor	 and	 an
inductor	in	series	as	it	is	shown	in	Figure	3.12.	Find	the	time	dependence	of	the
current	 in	 the	 circuit	 if	 the	 switch	 is	 closed	 at	 t	 =	 0.	 (Answer:I(t)=VmZ[
sinφ⋅exp(−t/τL)+sin(ωt−φ)	].)
3.9	The	switch	in	the	LRC	oscillatory	circuit	shown	in	Figure	3.13	is	closed	at	t
=	 0.	 Before	 t	 =	 0,	 a	 voltage	 V0	 is	 applied	 across	 the	 capacitor.	 Find	 the
conditions	for	 the	oscillatory	and	aperiodic	modes	and	the	 time	dependence	of
the	current	in	the	circuit	for	the	oscillatory	mode.
3.10	A	coil	of	area	A	=	10.0	cm2	connected	across	a	capacitor	C	=	10.0	μF.	The
assembly	 is	 placed	 in	 a	 uniform	magnetic	 field.	 The	magnetic	 field	 lines	 are
perpendicular	to	the	plane	of	the	coil.	The	magnetic	field	varies	with	t	at	a	rate
ΔB/Δt=5.00×10−3 T/s.	 Find	 the	 charge	 of	 the	 capacitor.	 (Answer:	qC	 =	 5.00	 χ
10−11	C.)

FIGURE	3.12	Circuit	with	a	resistor	and	an	inductor.



FIGURE	3.13	Circuit	with	a	resistor,	a	capacitor,	and	an	inductor.

3.11	 The	 wire	 of	 a	 coil	 of	 area	 A	 is	 cut	 at	 some	 point	 and	 the	 plates	 of	 a
capacitor	of	capacitance	C	are	connected	to	the	cut	ends.	The	coil	is	placed	in	a
time-varying	magnetic	field	whose	field	lines	are	perpendicular	to	the	coil	plane.
The	magnetic	field	is	increasing	uniformly	with	time	according	to	B(t)=βt+γt2,
where	 β	 and	 γ	 are	 constants.	 Find	 the	 time	 dependence	 of	 the	 charge	 on	 the
capacitor	 plates,	 assuming	 that	 the	 circuit	 is	 ideal	with	 the	 resistance	 equal	 to
zero.	(Answer:	qC(t)=C(β+2γt)A.)
3.12	Find	the	ratio	of	the	displacement	current	density	to	the	conduction	current
density	 in	 seawater	 (its	material	parameters	 are	κ	=	80.0,	κm	=	1.00,	σ	=	4.00
S/m)	for	electromagnetic	waves	with	frequencies	 f	=	103,	107	Hz.	 (Part	 of	 the
answer:	|	jds/jcd	|=1.26×109.	Here,	jds	and	jcd	are	displacement	and	conduction
current	densities,	respectively.)
3.13	Consider	 a	material	with	magnetic	 permeability	 κm	 placed	 in	 a	magnetic
field	 of	 a	 solenoid.	 The	magnetic	 field	B	 with	magnetic	 energy	 density	 um	 is
given.	 Determine	 (a)	 the	 magnetic	 permeability	 κm	 and	 (b)	 magnetic	 field
intensity	H.	(Answer:	κm=B2/2μ0um,  H=2um/B.)



Section	II
Electromagnetic	Waves	in	Homogeneous,
Heterogeneous,	and	Anisotropic	Media



4Electromagnetic	Waves	in	Homogeneous
Media	without	Absorption

Electromagnetic	 wave	 processes	 are	 extremely	 widespread	 in	 nature.	 One	 of	 the	 main
features	that	distinguish	electromagnetic	waves	from	mechanical	waves	is	that	they	do	not
need	any	material	for	their	propagation	because	they	are	able	to	propagate	in	vacuum	(i.e.,
in	a	space	free	of	material).	However,	electromagnetic	waves	can	also	propagate	in	space
filled	with	matter,	 altering	 their	 behavior	 to	 a	 greater	 or	 lesser	 extent	 depending	 on	 the
material.	 Thus,	 the	 characteristics	 of	 electromagnetic	 waves	 are	 dependent	 on	 the
properties	 of	 the	 material	 in	 which	 they	 are	 propagating.	 Despite	 the	 significant
differences	between	the	electromagnetic	waves	and	mechanical	waves,	the	former	in	many
respects	behave	like	the	latter.	All	types	of	waves	are	described	quantitatively	by	the	same
equations.	 Electromagnetic	 fields	 and	 waves	 play	 an	 important	 role	 in	 our	 lives.	 For
example,	 light	 is	 an	 electromagnetic	 wave.	 Radio,	 television,	 and	 various	 forms	 of
communication	are	based	on	the	important	properties	of	electromagnetic	waves	that	allow
them	 to	 transmit	 information.	 In	 this	 part	 of	 the	 book,	we	 consider	 the	 basic	 equations
describing	electromagnetic	waves	in	a	homogeneous,	isotropic,	nonabsorbing	medium,	as
well	as	the	basic	properties	of	these	waves.

4.1				ELECTROMAGNETIC	WAVE	SPECTRUM
All	 electromagnetic	waves	 are	 time-varying	 electric	 and	magnetic	 fields	 propagating	 in
space	 and	 have	 common	 properties	 independently	 of	 their	 wavelength	 (frequency).
However,	 the	methods	 and	 devices	 for	 electromagnetic	 wave	 generation	 and	 detection,
their	range	of	application,	and	the	effects	of	the	waves	on	biological	systems	are	strongly
wavelength	 dependent.	 Therefore,	 the	 entire	 electromagnetic	 spectrum	 is	 divided	 into
several	broad	ranges.	Within	each	 range,	 the	waves	share	similar	properties,	methods	of
generation,	applications,	detection,	and	their	effects	on	human	beings.	We	note	that	there
are	no	sharp	boundaries	between	these	ranges.

Let	 us	 consider	 the	 entire	 electromagnetic	 wave	 spectrum.	 In	 order	 of	 increasing
frequency,	this	spectrum	can	be	divided	into	the	following	seven	ranges	(Figure	4.1):

1.	Radio	waves
2.	Terahertz	(THz)	waves
3.	Infrared	radiation	(IR)
4.	Visible	light
5.	Ultraviolet	(UV)	radiation
6.	X-rays
7.	Gamma	rays

Since	the	wavelengths	within	the	radio	frequency	range	are	too	large	compared	to	the	size
of	atoms,	propagation	of	 radio	waves	and	 their	 interaction	with	matter	can	be	described
using	 the	 laws	of	classical	electrodynamics,	 that	 is,	Maxwell’s	equations,	without	 taking
into	consideration	the	atomic	structure	of	the	matter	with	which	the	waves	interact.



FIGURE	4.1	Electromagnetic	spectrum.

THz	waves	are	 identified	as	a	unique	range	that	 is	between	the	radio	frequency	range
and	infrared	range.	The	laws	of	classical	and	quantum	optics	are	applicable	for	infrared,
visible,	and	UV	radiation.	X-rays	and	gamma	rays	are	described	by	the	laws	and	equations
of	 quantum	 optics	 only.	 In	 the	 following	 text,	 we	 give	 more	 details	 about	 the
electromagnetic	wave	spectrum.

During	the	earlier	discoveries,	the	electromagnetic	waves	of	wavelength	λ	>	0.1	mm	=
10−4	m	and	frequency	f	=	c/λ	<	3	×	1012	Hz	were	considered	as	radio	waves.	Later	after
the	THz	waves	start	to	be	treated	as	a	unique	spectral	range,	the	range	of	radio	frequencies
was	reduced	to	below	3	×	1011	Hz	and	to	wavelengths	λ	>	1	mm	=	10−3	m.	The	radio	wave
range	 is	 commonly	 subdivided	 into	 several	 ranges	 that	 have	 different	 practical
applications	 (note	 that	 the	 terms	 “superlong	 waves”	 and	 “long	 waves”	 are	 not	 defined
precisely	and	their	definition	varies	across	the	literature):

•	Superlong	waves	(wavelengths	above	10	km,	frequencies	below	3	×	104	Hz)
•	Long	waves	(wavelengths	within	the	range	of	1–10	km,	frequencies	from	3	×
104	to	3	×	105	Hz)
•	Medium	waves	 (wavelengths	 within	 the	 range	 of	 100	 m-1	 km,	 frequencies
from	3	×	105	to	3	×	106	Hz)
•	Short	waves	(wavelengths	range	of	10–100	m,	frequencies	from	3	×	106	to	3	×
107	Hz)
•	Ultrashort	waves	(wavelengths	range	of	10–10−3	m,	frequencies	from	3	×	107

to	3	×	1011	Hz).

Ultrashort	 waves	 are	 subdivided	 into	 the	meter,	 centimeter,	 and	millimeter	 waves.	 The
submillimeter	waves,	as	it	was	already	mentioned	earlier,	are	recently	considered	as	“THz
waves.”

Waves	 with	 the	 wavelength	 under	 1	 m	 (frequency	 higher	 than	 300	 MHz)	 are	 also
referred	to	as	microwaves.



As	 it	 was	 already	 mentioned	 earlier,	 the	 THz	 part	 of	 spectrum	 corresponds	 to
wavelength	1	mm	>	λ	>	30	μm	and	frequencies	3	×	1011–1013	Hz.	This	frequency	range
got	a	special	attention	as	it	was	first	identified	as	a	window	of	frequencies	that	is	difficult
to	 generate	 using	 either	 the	 radio	 frequency	methods	 (as	 the	 frequency	 is	 too	 high)	 or
optical	methods	(as	 the	frequency	is	 too	low).	Now	the	THz	gap	is	practically	closed	as
advanced	optical	methods	allow	 to	generate	 radiation	with	 frequencies	down	 to	about	1
THz	=	1012	Hz	and	advanced	electrical	methods	are	extended	up	to	about	1	THz.

Infrared,	visible,	and	UV	radiation,	in	a	broad	sense,	compose	the	optical	spectrum	of
the	electromagnetic	waves.	The	joint	classification	of	these	three	ranges	is	caused	by	the
similarity	 in	 the	methods	 and	 devices	 used	 to	 study	 them	 and	 by	 the	 similarity	 of	 their
practical	applications.

IR	corresponds	to	wavelengths	adjacent	to	the	edge	of	the	THz	wave	range,	that	is,	3	×
10−5	m	>	λ	>	0.76	×	10−6	m	and	frequencies	from	1	×	1013	Hz	to	4	×	1014	Hz.	We	note	that
the	infrared	range	very	often	is	subdivided	into	near	infrared,	infrared,	and	far	infrared,	but
those	details	are	behind	the	scope	of	this	course.

Visible	 light	 spectrum	 is	 restricted	 to	wavelengths	within	 760	 nm	>	 λ	>	 400	 nm	 and
frequencies	from	4	×	1014	to	7.5	×	1014	Hz.	The	wavelengths	λ	=	760	nm	and	λ	=	400	nm
are	commonly	referred	to	as	the	red	and	violet	edges	of	the	visible	spectrum,	respectively.

The	wavelengths	adjacent	to	the	edge	of	short	visible	light	waves,	that	is,	400	nm	>	λ	>
30	nm	(frequencies	from	7.5	×	1014	to	1016	Hz),	belong	to	the	range	of	ultraviolet	 (UV)
radiation.

X-rays	correspond	to	electromagnetic	waves	of	wavelength	in	the	range	between	30	nm
and	1	×	10−3	nm	and	frequencies	between	1	×	1016	Hz	and	3	×	1022	Hz.	X-ray	radiation	is
generated	 during	 the	 deceleration	 of	 charged	 particles	 (electrons,	 protons),	 as	 well	 as
during	quantum	transitions	between	inner	electron	atomic	shells.

Gamma	radiation	corresponds	to	wavelengths	λ	<	10−5	nm	and	frequencies	f	>	3	×	1022
Hz.	Gamma	rays	are	generated	during	nuclear	processes	and	nuclear	reactions.

Exercise	4.1
An	 ideal	 oscillator	 circuit	 consists	 of	 a	 coil	 and	 a	 capacitor.	 The	 coil’s	 inductance	L	 is
equal	 to	2.00	nH	and	the	capacitance	can	be	varied	in	 the	range	from	Cmin	=	2.00	nF	to
Cmax	=	50.0	nF.	What	is	the	wave	band	this	oscillator	circuit	can	be	tuned	to?

Solution.	The	wavelength	of	the	electromagnetic	wave	is	connected	with	the	propagation
speed	 and	 frequency	 through	 the	 relationship	 λ=2πc/ω	 where	 the	 angular	 frequency	 is
given	 by	 ω=2π/T.	 The	 period	 of	 oscillations	 of	 the	 ideal	 oscillator	 circuit	 is	 given	 by
T=2πLC.	 Taking	 into	 account	 these	 relationships,	 we	 get	 for	 the	 wavelength	 of	 the
electromagnetic	 radiation	 the	 following	 expression:	 λ=2πcLC.	By	 substituting	 the	 given
data,	we	get	λmin	=	3.77	m.	When	the	capacitance	of	capacitor	is	increased	25	times,	the
wavelength	increases	5	times.	Therefore,	λmax	=	18.8	m.

4.2				WAVE	EQUATION



Maxwell’s	 equations	 allow	 us	 to	 describe	 precisely	 the	 generation	 and	 propagation	 of
electromagnetic	waves.	Waves	are	oscillations	propagating	 in	space	and	time,	which	can
transport	 energy	 but	 not	matter	 through	 space.	Electromagnetic	waves	 are	 composed	 of
electric	 and	magnetic	 fields	 rapidly	 varying	with	 time	 and	 propagating	 in	 space.	 These
waves	can	propagate	through	matter	as	well	as	through	vacuum.	The	propagation	velocity,
power	 per	 unit	 area,	 and	 polarization	 are	 some	 of	 the	 parameters	 that	 characterize	 an
electromagnetic	wave;	these	properties	can	be	determined	experimentally.

We	assume	 that	 there	 are	no	charges	 and	currents	 in	 the	 region	of	wave	propagation,
that	 is,	ρ	=	0,	 j	=	0.	Maxwell’s	 equations	 for	 a	 region	with	no	charges	 and	currents	 are
given	by	Equation	3.45.	Substituting	the	displacement	vector	D	=	κε0E	and	the	magnetic
field	 B=κmμ0H	 in	 these	 equations	 for	 the	 electric	 field	E	 and	 the	 magnetic	 intensity
vector	H,	Maxwell’s	equations	in	a	homogeneous	media	take	the	form

1.  ∮SE⋅dA=0,                                     div E=0,2.  ∮LH⋅dl=κε0ddt∫AE⋅dA,           
∇×H=κε0∂E∂t,3.  ∮LE⋅dl=−κmμ0ddt∫AH⋅dA,     ∇×E=−κmμ0∂H∂t,4.  

∮SB⋅dA=0,                                     div H=0.
(4.1)

The	case	of	propagation	of	electromagnetic	waves	in	vacuum	is	the	simplest	as	the	relative
dielectric	 permittivity	 κ	 =	 1	 and	 relative	 magnetic	 permeability	 κm	 =	 1.	Moreover,	 for
propagation	in	free	space,	there	is	no	need	to	use	the	integral	form	of	Maxwell’s	equations,
so	 we	 will	 work	 just	 with	 the	 differential	 forms	 that	 are	 given	 in	 the	 right	 column	 of
Equations	4.1.	 In	order	 to	obtain	 the	wave	 equation,	we	 apply	 the	∇	 ×	operation	 to	 the
right-	and	left-hand	parts	of	the	differential	form	of	the	third	equation,	that	is,

∇×(∇×E)=−κmμ0∇×(∂H∂t). (4.2)

Transposing	the	operators	∂/∂t	and	∇,	we	can	write	this	equation	as

∇×(∇×E)=−κmμ0∂∂t(∇×H). (4.3)

The	 left-hand	 part	 of	 the	 equation	 is	 transformed	 using	 the	 following	 equation	 for	 the
triple	vector	product	A×(B×C)=B(A⋅C)−C(A⋅B);	hence,

∇×(∇×E)=∇(∇⋅E)−∇2E=−∇2E. (4.4)

Here,	according	to	the	third	equation	from	the	system	(4.1),	divE	∇	⋅	E	=	0;	thus,	we	use
∇(∇⋅E)=0.	Taking	into	consideration	Equation	4.4,	we	substitute	the	expression	for	∇	×	H
taken	from	the	second	equation	of	system	(4.1)	 into	 the	right-hand	part	of	Equation	4.3.
Thus,	we	arrive	at	what	is	known	as	the	wave	equation	for	the	electric	field	vector	E:

∇2E=1v2∂2E∂t2. (4.5)

Applying	 a	 similar	 procedure	 to	 the	 second	 Equation	 4.1,	 one	 can	 obtain	 the	 wave
equation	for	the	magnetic	intensity	vector	H:



∇2H=1v2∂2H∂t2. (4.6)

Here,	 we	 introduce	 the	 propagation	 velocity	 of	 the	 electromagnetic	 wave	 in	 a	 media,
which	is	v=c/κκm	where	c	is	the	speed	of	light	in	a	vacuum:

c=1ε0μ0=3×108m/s. (4.7)

The	 propagation	 velocity	 of	 any	 electromagnetic	 wave	 in	 vacuum	 is	 constant	 for	 all
inertial	reference	frames	and	thus	compatible	with	the	special	theory	of	relativity.

Exercise	4.2
Starting	with	Maxwell’s	equations,	obtain	the	wave	equation	for	the	1D	case	when	a	plane
electromagnetic	wave	propagates	in	vacuum	along	the	z-axis.

Solution.	The	1D	case	corresponds	to	a	plane	electromagnetic	wave.	The	derivatives	∂/∂x
and	∂/∂y	of	both	fields	are	equal	to	zero.	In	this	case,	the	second	and	the	third	equations	of
system	(4.1)	take	the	form

κε0∂Ex∂t=−∂Hy∂z,     κmμ0∂Hx∂t=∂Ey∂z,κε0∂Ey∂t=∂Hx∂z,         κmμ0∂Hy∂t=
−∂Ex∂z,κε0∂Ez∂t=0,                 κmμ0∂Hz∂t=0.

The	last	 two	equations	describe	time-independent	stationary	fields.	It	 follows	from	them
that	 the	 longitudinal	 components	 are	 constants	 (i.e.,	 they	 are	 time	 independent):	 Ez	 =
const,	Hz	=	const.	From	the	first	and	the	fourth	equations	of	system	(4.1),	it	follows	that
both	Ez	 and	Hz	 do	not	depend	on	 z	 so	we	can	 choose	Ez	 =	Hz	 =	 0,	 that	 is,	 electric	 and
magnetic	field	vectors	are	perpendicular	to	the	direction	of	propagation.	From	the	system
given	earlier,	let	us	consider	the	equations	with	the	components	Ex	and	Hy:

κε0∂Ex∂t=−∂Hy∂z,     κmμ0∂Hy∂t=−∂Ex∂z.

Let	us	differentiate	the	first	equation	with	respect	to	time	and	the	second	with	respect	to	z.
As	a	result,	we	obtain

κε0∂2Ex∂t2=−∂2Hy∂t∂z,     κmμ0∂2Hy∂t∂z=−∂2Ex∂z2.

Therefore,

κε0κmμ0∂2Ex∂t2=∂2Ex∂z2.

By	analogy,	we	obtain	the	following	equation	for	the	component	Hy:

κε0κmμ0∂2Hy∂t2=∂2Hy∂z2.

The	quantity	1/ε0μ0=c2,	c	is	the	speed	of	the	electromagnetic	wave	in	vacuum.	Thus,

∂2Exv2∂t2=∂2Ex∂z2,   ∂2Hyv2∂t2=∂2Hy∂z2.

These	 equations	 describe	 a	 wave	 that	 propagates	 along	 the	 z-axis	 in	 a	 homogeneous
medium.	Analogous	equations	can	be	easily	obtained	for	components	Ey	and	Hx.

4.3				PLANE	MONOCHROMATIC	WAVES
Equations	 4.5	 and	 4.6	 describe	 a	 broad	 class	 of	 electromagnetic	 waves:	 from	 plane	 to



spherical	waves	and	from	monochromatic	waves	to	short	duration	electromagnetic	pulses.
The	simplest	and	most	important	type	of	electromagnetic	waves	is	a	monochromatic	wave,
for	which	the	vectors	E	and	H	have	a	harmonic	dependence	on	space	and	time:

E(t,r)=E0 cos(ωt−k⋅r),H(t,r)=H0 cos(ωt−k⋅r), (4.8)

where

E0	and	H0	are	the	amplitudes	of	the	corresponding	fields
ω	is	the	angular	frequency	(i.e.,	the	angular	frequency	of	oscillation	for	vectors	E	and
H)
k	is	the	wave	vector

The	argument	of	the	cosine	function	determines	the	vectors	E	and	H	(if	their	amplitudes
E0	 and	H0	 are	 known).	 Therefore,	 the	 argument	 of	 the	 cosine	 function	 in	 the	 wave
equation	is	called	the	wave	phase.	The	magnitude	of	the	wave	vector	(the	wave	number)
is	related	to	the	wavelength	as

k=2πλ=k0κκm=ωcκκm, (4.9)

where	 k0	 =	 ω/c	 is	 the	wave	 number	 in	 vacuum.	 The	wavelength	 λ	 in	 a	medium	 is	 the
distance	that	the	wave	travels	during	one	period	T	=	2π/ω	propagating	with	velocity	v:

λ=v⋅T=λ0κκm,    λ0=c⋅T.
The	propagation	of	a	wave	and	the	wave	vector	k	have	the	same	direction:

ωt−k⋅r=const  . (4.10)

The	 scalar	 product	 of	 two	 vectors	 in	 the	 Cartesian	 coordinate	 system	 was	 introduced
earlier:

k⋅r=kxx+kyy+kzz, (4.11)

where	the	wave	vector	components	are

kx=k cosα,  ky=k cosβ,   kz=k cos γ. (4.12)

Here,	 α,	 β,	 γ	 are	 the	 angles	 between	 the	 wave	 vector	 and	 the	 x-,	 y-,	 and	 z-axes,
respectively.	The	quantities	cos	α,	cos	β,	and	cos	γ	are	called	the	direction	cosines	of	the
vector	k,	and	they	are	shown	in	Figure	4.2.



FIGURE	4.2	Vector	k	in	Cartesian	coordinate	system.

Thus,	 the	 space	 variation	 of	 the	 wave	 phase	 occurs	 in	 the	 direction	 of	 the	 vector	 k.
Therefore,	 the	 vector	 k	 defines	 the	 wave	 propagation	 direction	 in	 space.	 Solution	 of
Equations	4.5	and	4.6	can	be	represented	by	a	harmonic	function:	either	by	cos(ωt−k⋅r)	or
by	sin(ωt−k⋅r).
A	 linear	 superposition	 of	 these	 harmonic	 functions	 is	 also	 a	 solution	 of	 the	 wave

equation.	There	are	four	Euler’s	formulas:

eia=cosa+i sina,e−ia=cosa−i sina,cosa=eia+e−ia2,sina=eia−e−ia2i,  i=−1. (4.13)

Employing	the	first	Euler’s	formula,	we	have

cos(ωt−k⋅r)+i sin(ωt−k⋅r)=exp[	i(ωt−k⋅r)	]. (4.14)

Taking	 into	account	Equation	4.14,	 for	 convenience,	we	 can	 express	 the	 solution	 of	 the
wave	equation	in	an	exponential	(complex)	form:

E(t,r)=E0 exp[	i(ωt−k⋅r)	]=|	E0	|exp[	i(ωt−k⋅r+φ)	],H(t,r)=H0 exp[	i(ωt−k⋅r)	]=|	H0
|exp[	i(ωt−k⋅r+φ)	], (4.15)

where	the	complex	amplitudes	are	given	as

E0=|	E0	|exp(iφ),H0=|	H0	|exp(iφ). (4.16)

Here,	 the	 real	 physical	 fields	 correspond	 to	 the	 real	 parts	 of	 solutions	 (4.15).	 The
exponential	 form	 of	 the	 wave	 fields	 simplifies	 mathematical	 manipulations.	 As	 an
example,	 we	 calculate	 divE	 and	∇	 ×	 E.	 The	 divergence	 of	 vector	 E	 in	 the	 Cartesian
coordinate	system	is

divE=∇⋅E=∂Ex∂x+∂Ey∂y+∂Ez∂z. (4.17)

To	calculate	partial	derivatives,	we	 take	 into	account	Equation	4.15	for	 the	electric	 field
and	Equation	4.11:

∂∂xexp(−ik⋅r)=−ikexp(−ik⋅r)⋅∂r∂x=−i(k⋅i)exp(−ik⋅r)=−ikx 



exp(−ik⋅r),                                      ∂∂yexp(−ik⋅r)=−iky exp(−ik⋅r),                                      
∂∂zexp(−ik⋅r)=−ikz exp(−ik⋅r).

(4.18)

Hence,

∇[	exp(−ik⋅r)	]=−ikexp(−ik⋅r)   or   div E=∇⋅E=−ik⋅E. (4.19)

Similarly,	we	can	obtain	the	following	expression	for	∇	×	E:

∇×E=−ik×E. (4.20)

Thus,	for	monochromatic	plane	waves	represented	in	the	complex	form,	an	application	of
operator	del,	∇,	is	replaced	by	a	vector	−ik.	In	this	case,	the	differential	form	of	Maxwell’s
equations	(4.1)	is

k⋅E=0,k×H=−ωκε0E,k×E=ωκmμ0H,k⋅H=0. (4.21)

The	first	and	last	equations	state	that	the	electromagnetic	waves	are	transverse	waves,	that
is,	E⊥H	and	H⊥k.	We	note	 that	 in	 longitudinal	waves,	 the	 characteristic	 vector	 of	 the
wave	oscillates	along	the	direction	of	the	wave	propagation	(longitudinal	acoustic	waves
is	one	of	the	examples).

According	to	the	second	and	third	equations	and	the	definition	of	a	vector	product,	the
three	vectors	E,	H,	and	k	are	perpendicular	to	each	other.	Consequently,	E	⊥	H	⊥	k,	and
these	vectors	are	ordered	so	that	they	obey	the	right-hand	rule.	In	addition,	the	quantitative
relations	between	the	amplitudes	of	the	electric	and	magnetic	fields	can	be	obtained	from
the	 second	 and	 third	 equations.	Taking	 into	 consideration	 the	 orthogonality	 of	 the	 three
vectors	E,	H,	and	k,	we	obtain	the	following	relations	for	the	amplitudes	of	these	vectors:

H=(kωκmμ0)E=(κκmκmμ0c)E=ε0κμ0κmE,E=μ0κmε0κH=ZH, (4.22)

where	 the	 quantity	 equal	 to	 the	 ratio	 between	 amplitudes	 of	 the	 electric	 and	 magnetic
wave	fields	is	referred	to	as	the	wave	impedance	of	the	medium:

Z=EH=μ0κmε0κ. (4.23)

From	this	equation,	we	get	the	impedance	of	vacuum	by	substituting	κ	=	κm	=	1:

Z0=μ0ε0=4π×10−78.85×10−12(HF)−1/2=120π(Ω)≃377(Ω).
Here,	Ω	=	Ohm	=	V/A	is	the	SI	unit	of	resistance.	Harmonic	oscillations	of	the	vectors	E
and	H	 in	 a	monochromatic	wave	 take	place	 in	 orthogonal	 planes.	The	wave	vector	 lies
along	 the	 intersection	 line	 of	 these	 two	 planes	 and	 points	 toward	 the	wave	 propagation
direction.	A	snapshot	(at	fixed	time	t)	of	the	vectors	E,	H,	and	k	 is	shown	in	Figure	4.3.
Vectors	E	and	H	oscillate	in	the	x0z	and	y0z	plane,	respectively.

Spherical	 waves	 are	 also	 solutions	 of	 the	 wave	 equation.	 These	 waves	 propagate
outward	 from	 a	 point	 source.	 A	 spherical	 wave	 field	 generated	 by	 a	 point	 source	 of



harmonic	spherical	waves	is	described	by	the	equation

E(t,r)=Arexp[	iω(t−rv)	]. (4.24)

One	can	see	that	the	amplitude	of	a	spherical	wave	is	inversely	proportional	to	the	distance
from	the	source.

Linear	 sources	such	as	 long	slits	and	 filaments	are	often	used	 in	optics.	Such	sources
emit	 what	 is	 known	 as	 cylindrical	 waves.	 The	 amplitude	 of	 these	 waves	 in	 the	 radial
direction	that	are	perpendicular	to	the	source	axis	decreases	with	increasing	distance	from
the	source.

Exercise	4.3
Write	a	general	equation	for	a	plane	wave	propagating	along	one	of	 the	coordinate	axes
(e.g.,	along	the	x-axis).	Assume	that	a	plane	with	dimensions	substantially	larger	than	the
wavelength	 serves	 as	 a	 source	 of	 plane	waves.	 The	 entire	 surface	 of	 the	 plane	 radiates
harmonic	wave	 along	 the	 direction	 perpendicular	 to	 the	 plane.	 The	 electric	 field	 vector
oscillates	in	this	plane	as

E(t)=A sinωt.

FIGURE	4.3	Propagating	electromagnetic	wave.

Solution.	At	a	distance	x	from	this	plane,	the	field	oscillations	do	not	arrive	instantly	since
the	 electromagnetic	 field	 propagates	with	 the	 finite	 speed	 c.	 Therefore,	 the	 relationship
that	gives	the	field	oscillations	at	a	distance	x	from	the	source	can	be	written	as

E(t,x)=A sinω(t−xc).

Here,	the	oscillations’	retardation	time	is	defined	by	the	wave	speed	c.	Taking	into	account
that	ω=2π/T,	the	equation	for	plane	wave	can	be	rewritten	in	a	slightly	different	form:

E(t,x)=A sin(ωt−2πxcT).

From	the	last	expression,	we	see	that	the	field	oscillations	have	temporal	as	well	as	spatial
periodic	dependences.	As	we	already	know,	the	process	that	is	periodic	in	time	and	space
is	called	wave	process.

Let	 us	 introduce	 the	 quantity	 k=2π/λ,	which	 is	 called	wave	 number.	 In	 this	 case,	 the
equation	for	plane	wave	that	propagates	in	the	positive	direction	of	x-axis	takes	the	form
that	is	symmetric	with	respect	to	time	and	space:

E(t,x)=A sin(ωt−kx).

The	plane	wave	equation	is	usually	written	in	this	form	where	constant	A	is	amplitude	of



the	wave	and	it	is	real	number.

In	the	case	when	the	equation	for	the	plane	wave	is	written	in	the	form

E(t,x)=Aexp(i(ωt−kx)),

both	constants	A	and	k	can	be	complex	numbers:

A=A′+iA″=|	A	|exp(iφ),         k=k′−ik″.

In	 this	 case,	 the	 amplitude	 of	 the	 wave	 is	 |	 A	 |=(A′)2+(A″)2	 and	 φ=arctg(A″/A′)
determines	the	phase	of	the	wave,	so	the	equation	for	the	plane	wave	can	be	written	as

E(t,x)=|	A	|exp(−k″x)exp(i(ωt−k′x+φ)).

4.4				POLARIZATION	OF	ELECTROMAGNETIC
WAVES

As	mentioned	earlier,	an	important	property	of	electromagnetic	waves	is	the	fact	that	they
are	transverse,	 that	 is,	 the	electric	and	magnetic	field	vectors	are	orthogonal	 to	the	wave
propagation	 direction.	 There	 is	 a	 wide	 class	 of	 electromagnetic	 waves,	 in	 which	 the
electric	and	magnetic	fields	oscillate	in	fixed	planes.

An	 electromagnetic	wave	 is	 linearly	 polarized	 if	 its	 vector	E	 oscillates	 along	 a	 fixed
direction	 in	 space.	 The	 plane	 containing	 vectors	k	 and	E	 is	 defined	 as	 the	 polarization
plane.	During	an	oscillation	period,	the	tip	of	the	vector	E	(and	also	H)	 traces	a	straight
line,	whose	 length	 is	 equal	 to	 twice	 the	 amplitudes	 of	E	 (or	H).	 A	wave	 is	 elliptically
polarized,	 if	 during	 one	 period	 the	 tip	 of	 vector	E	 (or	H)	 traces	 an	 ellipse	 in	 the	 plane
perpendicular	to	the	wave	propagation	(see	Figure	4.4b).	If	a	vector	traces	a	circle	for	the
period,	the	wave	is	circularly	polarized	(see	Figure	4.4a).	Circular	and	linear	polarizations
can	be	considered	as	special	cases	of	elliptical	polarization.

FIGURE	4.4	Circular	(a)	and	elliptically	(b)	polarized	waves.

An	 electromagnetic	wave	 has	 two	 independent	 orthogonal	 states	 of	 polarization.	 The
electromagnetic	 wave	 with	 an	 arbitrary	 state	 of	 polarization	 can	 be	 obtained	 as	 a
superposition	 of	 two	 linearly	 polarized	 waves	 with	 the	 same	 frequencies	 polarized
orthogonally	to	each	other	and	propagating	in	the	same	direction	(i.e.,	E1⊥E2).	Generally,
these	waves	have	different	amplitudes	and	a	constant	phase	difference.	For	simplicity,	we
consider	 only	 the	 electric	 field	 components	 and	 assume	 that	 the	waves	 are	 propagating
along	the	positive	direction	of	the	z-axis.	Here,	we	assume	that	the	electric	field	vector	of
the	 first	wave	oscillates	 along	 the	x-axis	 and	 that	 the	 electric	 field	 vector	 of	 the	 second
wave	along	the	y-axis.	The	equations	that	describe	these	waves	are

E1(t,z)=iEx(t,z)=iAx cos(ωt−kz),E2(t,z)=jEy(t,z)=jAy cos(ωt−kz+φ), (4.25)

where



Ax	and	Ay	are	the	amplitudes	of	the	two	component	waves
φ	is	the	phase	difference	between	the	two	waves

The	net	electric	field	E	=	E1	+	E2	oscillates	 in	a	plane	perpendicular	 to	 the	direction	of
wave	propagation	at	a	fixed	coordinate	z.	The	 tip	of	 the	vector	E	 traces	with	 time	some
closed	 curve	 in	 the	 x0y	 plane.	 Let	 us	 find	 an	 equation	 for	 the	 curve.	 We	 transform
Equation	4.25	as	follows:

ExAx=cos(ωt−φx)=cosωt⋅cosφx+sinωt⋅sinφx,EyAy=cos(ωt
−φy)=cosωt⋅cosφy+sinωt⋅sinφy, (4.26)

where	the	angles	φx(z)=kz,  φy(z)=kz−φ	are	introduced.	To	obtain	the	trajectory	of	the	tip
of	vector	E	 in	the	x0y	plane,	 the	time	must	be	eliminated	in	Equation	4.26.	We	multiply
the	first	equation	by	cos	φy	and	 the	second	by	cos	φx,	 then	subtract	 the	second	equation
from	 the	 first	 one.	 After	 that,	 these	 equations	 are	 multiplied	 by	 sin	 φy	 and	 sin	 φx,
respectively,	and	one	equation	is	subtracted	from	another.	Thus,	we	arrive	to	the	following
set	of	equations:

(ExAx)cosφy−(EyAy)cosφx=sinωt⋅sin(φx−φy),(ExAx)sinφy−(EyAy)sinφx=
−cosωt⋅sin(φx−φy). (4.27)

In	this,	we	take	into	account	that

sinφx cosφy−sinφy cosφx=sin(φx−φy).

Then	Equations	4.27	are	squared	and	summed	yielding	the	equation	for	a	curve	traced	by
a	 tip	 of	 the	 vector	 E	 for	 one	 period	 in	 the	 plane	 perpendicular	 to	 the	 direction	 of
propagation:

(ExAx)2+(EyAy)2−2ExAxEyAycosφ=sin2 φ. (4.28)

In	this,	we	take	into	account	that

cosφy cosφx+sinφy sinφx=cos(φx−φy)=cosφ.

If	we	use	Ex	and	Ey	as	coordinates,	this	equation	has	the	general	form	of	an	ellipse	with	its
center	at	 the	origin	(Ex	=	Ey	=	0);	we	note	 that	 the	ellipse	axes	do	not	coincide	with	 the
coordinate	 axes	 (Figure	4.5).	The	 angle	ψ	between	 the	x-axis	 and	 the	major	 axis	 of	 the
polarization	ellipse	is	determined	by	the	following	expression:

tg2ψ=2AxAyAx2−Ay2cosφ.

An	ellipse	is	inscribed	into	a	rectangle	with	sides	2Ax	and	2Ay	and	it	touches	the	rectangle
sides	at	points	A,	A′	with	coordinates	(±Ax,±Ay cosφ)	and	B,B′  (±Ax cosφ, ±Ay)	(Figure
4.5).

The	orientation	of	the	polarization	ellipse	and	its	parameters	depend	on	the	amplitudes
of	the	constituent	waves	and	the	phase	difference	between	them.	The	rotation	direction	of
vector	E	is	determined	by	the	phase	difference	φ.



Let	us	consider	some	particular	cases,	when	Equation	4.28	for	 the	polarization	ellipse
reduces	to	a	simpler	equation	describing	a	simpler	trajectory.	Thus,	for	a	phase	difference
φ=mπ2, m=±1,±3,±5,…,	Equation	4.28	takes	a	form

(ExAx)2+(EyAy)2=1. (4.29)

This	 is	 the	 equation	 for	 an	 ellipse,	 whose	 symmetry	 axes	 coincide	with	 the	 coordinate
axes,	with	semiaxes	that	are	equal	to	A1	and	A2.	In	this	case,	one	of	the	components	of	E	is
maximum	when	the	other	component	is	zero.

FIGURE	4.5	Polarization	ellipse	of	the	elliptically	polarized	electromagnetic	wave.

In	the	case	of	a	circularly	polarized	wave,	the	ellipse	becomes	a	circle.	The	amplitudes
of	 the	mutually	 perpendicular	 components	 of	 the	wave	 electric	 field	 are	 assumed	 to	 be
equal.	Since	Ax	=	Ay	=	A0,	Equation	4.29	becomes

(Ex)2+(Ey)2=A02. (4.30)

Tracing	 a	 circle,	 the	 tip	 of	 the	 vector	E	 rotates	 in	 the	 clockwise	 or	 counterclockwise
direction.	 To	 differentiate	 these	 two	 states,	 the	 concepts	 of	 left	 circular	 polarization
(LCP)	and	right	circular	polarization	(RCP)	are	introduced.	If	vector	E	rotates	in	time	in
the	clockwise	direction,	for	an	observer	looking	in	the	direction	of	the	wave	propagation,
the	wave	will	be	right	circularly	polarized.	This	phenomenon	is	sometimes	called	“right-
hand	circular	polarization:”	 if	 the	observer	points	out	 the	right	 thumb	in	 the	direction	of
the	propagation,	the	other	four	fingers	will	point	in	the	direction	of	the	rotation	of	E.	In	the
case	 of	 the	 left	 circularly	 polarized	wave,	 the	 vector	E	 rotates	 in	 the	 counterclockwise
direction	for	an	observer	looking	in	the	direction	of	the	wave	propagation.	That	is,	if	the
observer	 points	 out	 the	 left	 thumb	 in	 the	 direction	 of	 the	 propagation,	 the	 other	 four
fingers	will	point	in	the	direction	of	the	rotation	of	E.	The	rotation	direction	of	the	vector
E	depends	on	the	sign	of	the	phase	difference	φx	–	φy,	=	φ:	for	right	circular	polarization
sin	φ	>	0,	while	for	left	circular	polarization	sin	φ	<	0.

Another	 important	 special	 case	 is	 that	 of	 a	 linearly	 polarized	 wave.	 According	 to
Equation	 4.28,	 at	 φ=mπ, m=0,±1,±2,±3,…,	 the	 equation	 of	 the	 polarization	 ellipse
transforms	into	the	equation	of	a	straight	line:

Ey=(−1)mAyAxEx. (4.31)

Figure	4.6	shows	all	polarization	types	for	the	two	rotation	directions	of	the	vector	E	and
different	values	of	the	phase	angle	φ.



The	 polarization	 types	 discussed	 earlier	 cover	 all	 possible	 polarizations	 of
electromagnetic	waves.

Monochromatic	 radiation	 is	 always	 polarized.	 Radiation	 composed	 of	 waves	 with
various	wavelengths	has	the	vector	E	oscillating	either	in	ordered	or	in	random	directions.
Radiation	 with	 vector	 E	 that	 changes	 randomly	 is	 called	 “unpolarized.”	 An
electromagnetic	wave	 can	 be	 partially	 polarized.	 Partial	 polarization	 is	 characterized	 by
the	degree	of	polarization	that	is	defined	as

P=Imax−IminImax+Imin, (4.32)

where	 Imax	 and	 Imin	 are	 the	 maximal	 and	 minimal	 intensities	 (flux	 density	 of
electromagnetic	energy)	of	the	radiation	passing	through	a	polarizer.	Note	that	unpolarized
light	 becomes	 polarized	 after	 it	 passes	 through	 a	 polarizer.	 To	 find	 Imax	 and	 Imin,	 it	 is
necessary	to	do	two	measurements:	We	rotate	the	polarizer	to	find	the	maximum	value	of
the	 intensity	 and	measure	 Imax.	 Then	we	 continue	 to	 rotate	 the	 polarizer	 till	 we	 find	 a
minimum	 value	 of	 the	 intensity	 and	 measure	 Imin.	 Note	 that	 intensity	 is	 defined	 by
Equation	4.65.

FIGURE	4.6	Possible	types	of	polarization	(linear	(a),	circular	(b),	and	elliptical	(c))	for
different	values	of	phase	angle	φ=φx−φy:Ax≠Ay(a,c),Ax=Ay(b).

Some	sources	of	electromagnetic	 radiation	generate	waves	with	varying	polarizations.
Thermal	 radiation	 generated	 by	 chaotically	 moving	 atoms	 is	 always	 unpolarized.
Cyclotron	 radiation	 generated	 by	 electrons	 moving	 along	 circular	 orbits	 in	 a	 magnetic
field	is	circularly	polarized.

Polarizers	are	used	to	obtain	linearly	polarized	light.	Independently	of	the	principle	of
their	 operation,	 polarizers	 allow	 the	 propagation	 through	 them	 only	 of	 electromagnetic
wave	with	 the	 electric	 field	E	 that	 is	 parallel	 to	 the	 plane	 of	 the	 polarizer.	 Figure	 4.7
shows	 that	 for	 a	wave	with	 vector	E	 oriented	 at	 an	 angle	 α	 relative	 to	 the	 plane	 of	 the
polarizer,	only	the	projection	Etr	of	E	along	this	plane	passes	through	the	polarizer:

Etr=E cos α.

Since	intensity	is	determined	by	the	square	of	the	electric	field,	the	intensity	of	the	passed
wave	is	determined	by	the	equation

Itr=I0 cos2 α,

where	I0	is	the	intensity	of	the	incident	wave.

Exercise	4.4



Show	 that	 the	 superposition	 of	 a	 right	 and	 a	 left	 circularly	 polarized	wave	 of	 the	 same
amplitude	and	frequency	produces	a	linearly	polarized	wave.

Solution.	 Using	 Equation	 4.25,	 we	 write	 the	 equations	 for	 a	 right	 circularly	 polarized
wave.	In	this	case,	φ	=	π/2	and

ExR(t,z)=A0 cos(ωt−kz),EyR(t,z)=A0 cos(ωt−kz+π2)=−A0 sin(ωt−kz).

Analogously,	the	equations	for	a	left	circularly	polarized	wave	are	obtained	from	Equation
4.25	for	φ	=	−π/2:

ExL(t,z)=A0 cos(ωt−kz),EyL(t,z)=A0 cos(ωt−kz−π/2)=A0 sin(ωt−kz).

FIGURE	4.7	Polarizer	transfer	only	Etr	component	of	the	electric	field	of	waves.

Summing	of	the	corresponding	components	of	these	waves	yields

Ex(t,z)=ExR(t,z)+ExL(t,z)=2A0 cos(ωt−kz),Ey(t,z)=EyR(t,z)+EyL(t,z)=0.

Thus,	 the	 superposition	 of	 a	 right	 and	 a	 left	 circularly	 polarized	 wave	 of	 the	 same
amplitude	and	frequency	produces	a	linearly	polarized	wave	with	polarization	along	the	x-
axis,	whose	electric	field	vector	is

E=ER+EL=2iA0 cos(ωt−kz).

4.5				SUPERPOSITION	OF	ELECTROMAGNETIC
WAVES

1.	Electromagnetic	waves	obey	the	principle	of	superposition.	According	to	this	principle,
waves	 generated	 by	 different	 sources	 do	 not	 interact,	 that	 is,	 waves	 with	 different
frequencies	and	directions	propagate	independently	in	isotropic	media.	The	complex	wave
field	generated	by	two	or	more	sources	is	a	vector	sum	of	the	wave	fields	generated	by	the
separate	sources:

E=E1+E2+⋯ (4.33)

The	principle	of	superposition	allows	not	only	 to	combine	waves	but	also	to	decompose
them	 as	 sums	 of	 independent	 sine	 waves.	 This	 means	 that	 any	 complex	 (nonplane,
nonmonochromatic)	wave	can	always	be	represented	as	a	sum	of	sine	waves	of	different
amplitudes,	frequencies,	phases,	and	wave	vectors.	This	possibility	is	widely	used	in	the
theory	of	different	(not	exclusively	electromagnetic)	wave	processes.

Mathematically,	 the	principle	of	superposition	 is	a	consequence	of	 the	 linearity	of	 the



wave	 equation	 that	 describes	 the	 propagation	 of	 light	 waves	 in	 vacuum.	 Indeed,	 if	 the
fields	E1,	E2,	E3,…	are	solutions	of	the	wave	equation,	their	sum	E	=	E1	+	E2	+	…	is	also
a	solution.	You	can	verify	this	by	substituting	into	the	wave	equation	the	solutions	in	the
form	of	a	sum	of	waves	(e.g.,	plane	waves):

E=∑iEi=∑iAi0cos(ωit−ki⋅r), (4.34)

where	ki	are	 the	wave	vectors	and	ki	=	ωi/c	are	 their	magnitudes	(wave	numbers)	 in	 the
sum.	In	this	case,	the	wave	equation	is	a	sum	of	terms	describing	the	individual	waves.

Applying	 the	 principle	 of	 superposition,	we	 can	 show	 that	 two	 plane	monochromatic
waves	traveling	in	the	same	direction	and	with	equal	frequencies	combine	to	form	a	plane
monochromatic	wave	of	 the	 same	 frequency.	 If	 the	waves	have	different	 frequencies	 or
different	propagation	directions,	the	resultant	traveling	wave	is	not	monochromatic.

2.	Let	us	consider	 the	superposition	of	 two	plane	monochromatic	waves	 traveling	 in	 the
same	 direction	 with	 similar	 angular	 frequencies	 ω1,	 ω2	 and	 wave	 numbers	 k1,	 k2.	 For
simplicity,	we	 assume	 that	 the	 electric	 field	 vectors	E1	 and	E2	 of	 these	waves	 oscillate
along	 the	 same	 direction,	 for	 example,	 along	 the	 x-axis.	 Assume	 that	 the	 direction	 of
propagation	is	along	the	z-axis	and	the	amplitudes	of	both	waves	are	equal:

E1=iA0 cos(ω1t−k1z),       E2=iA0 cos(ω2t−k2z), (4.35)

where	 |	 ω1−ω2	 |≪ω1,ω2,   |	 k1−k2	 |≪k1,k2,  and   ki=ωi/c.	 Using	 the	 principle	 of
superposition,	we	can	express	the	resulting	wave	as	follows:

E=E1+E2=2iA0 cos(ω1−ω22t−k1−k22z)cos(ω1+ω22t−k1+k22z). (4.36)

Taking	into	account	that	|	ω1−ω2	|≪ω1+ω2 and  |	k1−k2	|≪k1+k2,	the	net	electric	field	of
the	two	waves	is	given	by	the	equation

E=E1+E2=2iA0 cos(Δω2t−Δk2z)cos(ωt−kz), (4.37)

where

Δω=ω1−ω2
Δk=k1−k2
ω=(ω1+ω2)/2
k=(k1+k2)/2

Under	the	assumptions	given	earlier,	we	have	the	following	relations:	|	Δω/2	|≪ω	and	|
Δk/2	|≪k.	Therefore,	the	argument	of	the	first	cosine	term	varies	considerably	slower	than
the	 second	 cosine	 term.	 Thus,	 we	 can	 assume	 that	 Equation	 4.37	 describes	 a	 traveling
wave	with	the	variable	amplitude:

E=2iA(t,z)cos(ωt−kz), (4.38)

where	the	variable	amplitude	is	given	by



A(t,z)=A0 cos(Δω2t−Δk2z). (4.39)

From	these	relations,	one	can	conclude	that	the	resultant	wave	with	angular	frequency	ω
and	wave	 number	 k	 has	 amplitude	 that	 is	modulated	 in	 space	 and	 time	 by	 an	 envelope
function	 that	 varies	 with	 angular	 frequency	 Δω/2	 and	 wave	 number	 Δk/2.	 Figure	 4.8
shows	the	time	dependence	of	the	wave	electric	field	at	a	fixed	coordinate	z0=π/Δk.	The
solid	line	indicates	oscillations	with	angular	frequency	ω,	and	the	dashed	line	denotes	the
time-varying	amplitude	envelope	that	changes	from	a	maximum	value	of	2A0	 to	zero.	 If
the	amplitudes	of	the	two	waves	are	not	equal	to	each	other,	the	amplitude	of	the	resultant
wave	changes	from	(A10+A20)  to  |	A10−A20	|.

The	periodic	variation	of	the	oscillations	amplitude	caused	by	the	superposition	of	two
waves	with	close	frequencies	is	called	beat.	The	beat	frequency	is	equal	to	the	frequency
difference	 Δω =	 |	 ω1−ω2	 |	 between	 the	 components.	 The	 resulting	 wave	 described	 by
Equation	4.37	is	modulated	not	only	in	time	but	also	in	space.	Such	a	traveling	wave	with
varying	amplitude	is	no	longer	monochromatic.	The	following	equation	gives	an	example
of	two	waves	with	close	frequencies	and	different	amplitudes:

FIGURE	4.8	Time	dependence	at	a	fixed	coordinate	z0=π/Δk	of	the	electric	field	of	the
two	 plane	monochromatic	waves	 of	 the	 same	 amplitude	 traveling	 in	 the	 same	 direction
with	similar	angular	frequencies	ω1,	ω2	and	wave	numbers	k1,	k2.

E(t,z0)=2A0 cos[	5ω(t−zv)	]+A0 cos[	6ω(t−zv)	].

The	electric	field	is	shown	in	Figure	4.9	as	a	function	of	t	–	z/v.	This	variable	is	chosen	to
show	dependence	on	time	and	space:	for	the	fixed	coordinate	(e.g.,	z	=	0),	the	plot	shows
dependence	in	time,	like	Figure	4.8,	but	for	fixed	time,	it	shows	dependence	in	space.

3.	According	to	the	principle	of	superposition,	any	wave	can	be	represented	as	a	sum	of
sine	waves.	The	result	of	superposition	of	such	waves	with	slightly	differing	frequencies	is
called	a	wave	packet,	because	it	is	localized	in	space	at	any	time	t.

We	 already	 considered	 a	 simple	 wave	 packet	 comprising	 two	 harmonic	 waves
propagating	in	the	same	direction,	the	resultant	wave	is	described	by	Equations	4.38	and
4.39.	 The	 velocity	 of	 a	 wave	 packet	 is	 defined	 as	 the	 velocity	 of	 the	 wave	 amplitude
maximum	located	in	the	center	of	a	wave	packet.	Since	the	amplitude	in	Equation	4.39	is
constant	under	the	condition

Δω 2t−Δk 2z=const, (4.40)

the	wave	packet	velocity	is	expressed	as

vgr=dzdt=ΔωΔk. (4.41)



The	velocity	vgr	 is	 called	 the	 group	 velocity.	 It	 is	 defined	 as	 the	 velocity	 of	 a	 group	 of
waves	 forming	 the	 wave	 packet	 that	 is	 localized	 in	 space	 at	 each	 moment	 of	 time.
Expression	(4.41)	is	obtained	for	the	wave	packet	comprising	two	waves.

4.	 Let	 us	 consider	 now	 the	 propagation	 of	 a	 wave	 packet	 that	 is	 the	 superposition	 of
monochromatic	waves	polarized	along	the	x-axis.	These	waves	have	different	frequencies
spread	 continuously	 within	 a	 narrow	 spectral	 range	 of	 frequencies	 2Δω≪ω0	 with
corresponding	wave	numbers	2Δk≪k0.	Here,	ω0	 is	 the	central	 angular	 frequency	of	 the
wave	packet	and	k0=ω0/c	is	the	corresponding	wave	number.	In	this	case,	the	wave	packet
is	represented	not	as	a	sum	but	as	an	integral	of	continuously	distributed	monochromatic
waves:

E(t,z)=i∫k0−Δkk0+ΔkA(k)exp[	i(ωt−kz)	]dk, (4.42)

FIGURE	4.9	The	electric	field	of	the	two	plane	monochromatic	waves	with	close	angular
frequencies	and	different	amplitudes	(one	amplitude	is	A0	and	the	second	is	2A0)	traveling
in	the	same	direction	is	shown	as	a	function	of	t	–	z/v.	(a)	Shows	electric	field	E/A0	of	each
of	those	waves	and	(b)	shows	the	resulting	electric	field	of	the	sum	of	these	two	waves:
E(t)/A0=2cos(5ωt′)+cos(6ωt′)	where	t′=t−z/v.

where	 A(k)	 is	 the	 amplitude	 of	 a	 component	 with	 wave	 number	 k.	 For	 the	 sake	 of
simplicity,	the	harmonic	waves	in	Equation	4.42	are	shown	in	their	exponential	form.

Let	us	expand	ω(k)	as	a	Taylor	series	over	a	small	parameter	δk=k−k0	around	k0:

ω(k)=ω(k0)+(dωdk)k=k0(k−k0)+⋯=ω0+vgrδk+⋯ (4.43)

Here,	we	introduce	a	general	expression	for	the	group	velocity:

vgr=dωdk. (4.44)

We	can	represent	the	phase	of	the	wave	in	the	form

ωt−kz=(ω0+vgrδk)t−(k0+δk)z=(ω0t−k0z)−(z−vgrt)δk. (4.45)

The	terms	of	second	order	as	well	as	higher	orders	in	δk	are	omitted.	Substituting	Equation
4.45	into	Equation	4.42,	we	get

E(t,z)=i{	∫−ΔkΔkA(k)exp[	−i(z−vgrt)δk	]d(δk)	}exp(ω0t−k0z)               
=iB(t,z)exp(ω0t−k0z), (4.46)



where	the	function

B(t,z)=∫−ΔkΔkA(k)exp[	−i(z−vgrt)δk	]d(δk) (4.47)

is	the	wave	packet	envelope.	To	find	the	envelope	profile,	we	can	simplify	Equation	4.47
assuming	that	the	spectral	amplitude	A(k)	(which	commonly	depends	on	the	wave	number
k)	is	a	constant.	So,	we	can	take	it	outside	the	integral	in	Equation	4.47	and	then	perform
the	integration:

B(t,z)=A∫−ΔkΔkexp[	−i(z−vgrt)δk	]d(δk)               =2AΔksin[	(z−vgrt)Δk	](z
−vgrt)Δk=2AΔksinξξ, (4.48)

where	ξ =  (z−vgrt)Δk.	Thus,	Equation	4.46	describes	a	plane	wave	with	the	frequency	ω0,
wave	number	k0,	and	modulated	amplitude	B(t,	z).	Figure	4.10a	shows	the	dependence	of
envelope	profile	of	the	wave	packet	(4.48)	on	the	parameter	ξ.	The	wave	packet	moves	in
space	with	group	velocity	vgr.	The	modulated	wave	packet	of	Equation	4.46	contains	 the
fast	oscillations	at	ω0	as	shown	schematically	in	Figure	4.10b.

5.	 In	 addition	 to	 the	group	velocity,	 a	wave	 is	 characterized	by	a	phase	velocity,	 which
determines	 the	velocity	of	propagation	of	 the	wave	phase.	 It	 can	be	 expressed	 from	 the
condition	ωt−kz=const:

vph=dzdt=ωk. (4.49)

FIGURE	4.10	Dependence	of	envelope	profile	of	 the	wave	packet	of	Equation	4.48	 on
the	parameter	 ξ	 (a)	 and	 the	wave	packet	of	Equation	4.46	 that	moves	 in	 space	with	 the
group	velocity	vgr	(b).

In	 vacuum,	 the	 phase	 velocity	 is	 always	 equal	 to	 the	 speed	 of	 light,	 since	 according	 to
Equation	4.9,	ω/k0	=	c.	In	a	transparent	optical	medium,	the	phase	velocity	can	be	either
smaller	or	greater	than	the	speed	of	light	in	vacuum.	There	is	a	link	between	the	group	and
phase	velocities	that	can	be	found	substituting	Equation	4.49	into	Equation	4.44:

vgr=dωdk=ddk(vphk)=vph+kdvphdk=vph−λdvphdλ, (4.50)

where	k	=	2π/λ.

From	Equation	4.50,	 it	 follows	 that	 the	group	velocity	can	be	either	 smaller	or	 larger
than	the	phase	velocity	depending	on	the	sign	of	the	derivatives	dvph/dk	and	dvph/dλ.	In



media	 where	 these	 derivatives	 are	 zero,	 the	 group	 velocity	 coincides	 with	 the	 phase
velocity.	Such	a	medium	is	called	nondispersive.	Vacuum	can	be	considered	a	special	case
of	nondispersive	medium	 in	which	phase	and	group	velocities	are	equal	 to	 the	 speed	of
light,	that	is,	vgr	=	vph	=	c.

4.6				ENERGY	AND	MOMENTUM	OF	A	WAVE
1.	Numerous	experiments	have	demonstrated	 that	electromagnetic	waves	 transfer	energy
from	 one	 point	 to	 another	 in	 a	 finite	 time	 because	 of	 the	 finite	 velocity	 of	 wave
propagation.	 Examples	 of	 such	 a	 transfer	 are	 heating	 of	 a	 body	 illuminated	 by
electromagnetic	 waves,	 light-induced	 emission	 of	 electrons	 from	 metal	 surfaces,	 and
information	transmission	with	electromagnetic	pulses.

The	energy	of	electromagnetic	waves	propagating	 in	media	 is	stored	 in	 the	associated
electric	 and	 magnetic	 fields.	 The	 volume	 energy	 density	 of	 electromagnetic	 waves
propagating	 in	 a	medium	 is	 determined	 at	 each	 point	 as	 the	 sum	of	 the	 energies	 of	 the
electric	and	magnetic	fields:

u=12(E⋅D+H⋅B)=κε0E2+κmμ0H22, (4.51)

Using	 the	 relationship	 between	 the	 electric	 and	magnetic	 fields	E=κmμ0+κε0H,	we	 can
conclude	that	the	electromagnetic	wave	energy	of	the	electric	field	is	equal	to	the	energy
of	the	magnetic	field.

Let	us	now	define	the	energy	transferred	by	a	wave	per	unit	time	and	unit	area,	that	is,
the	energy	flux	density.	We	take	two	equations	from	four	Maxwell’s	Equations	4.21

k×H=−ωκε0E,k×E=ωκmμ0H, (4.52)

and	multiply	the	first	equation	by	E	and	the	second	equation	by	H.	By	subtracting	the	first
from	the	second,	we	come	up	with

H⋅(k×E)−E⋅(k×H)=ω(κε0E2+κμ0H2). (4.53)

The	 right-hand	 part	 expression	 in	 brackets	 is	 twice	 the	 energy	 density	 of	 the
electromagnetic	field,	that	is,

κε0E2+κmμ0H2=2(ue+um)=2u. (4.54)

Using	the	vector	identities

A⋅(B×C)=C⋅(A×B)=B⋅(C×A)     and    A×B=−B×A, (4.55)

we	get

H⋅(k×E)−E⋅(k×H)=k⋅(E×H)−k⋅(H×E)=2k⋅(E×H). (4.56)

We	now	introduce	the	vector



S=E×H, (4.57)

which	is	called	the	Poynting	vector.	This	vector	is	equal	to	the	energy	flux	density	for	the
electromagnetic	field.	Since	the	vectors	E,	H,	and	k	form	a	right-hand	system	of	vectors,
the	 vector	 S	 is	 parallel	 to	 vector	 k.	 Therefore,	 expression	 (4.57)	 can	 be	 rewritten	 as
follows:

S=vukk. (4.58)

Thus,	 the	 energy	 flux	 density	 S	 of	 an	 electromagnetic	 wave	 is	 a	 vector	 quantity	 with
magnitude	 S=vu,  ω=vk,  v=c/κmκ	 and	 its	 direction	 coincident	 with	 the	 direction	 of	 the
wave	propagation.

2.	 The	mean	 value	 of	 the	 energy	 flux	 density	 of	 a	 harmonic	wave	 for	 one	 period	 is
physically	 meaningful.	 It	 is	 convenient	 to	 use	 the	 complex	 form	 of	 the	 electric	 and
magnetic	fields:

E=E0 exp[	i(ωt−k⋅r)	],         H=H0 exp[	i(ωt−k⋅r)	]. (4.59)

Since	the	energy	flux	density	is	a	real	variable,	then	the	real	parts	of	the	fields	(E+E*)/2
and	(H+H*)/2	are	being	used.	We	substitute	 these	 terms	 into	Equation	4.57	and	average
over	time:

〈	S	〉=14〈	(E+E*)×(H+H*)	〉=14〈	E×H+E*×H*+E*×H+E×H*	〉.        
Here   E*=E0 exp[	−i(ωt−k⋅r)	],     H*=H0 exp[	−i(ωt−k⋅r)	]. (4.60)

The	first	two	terms	in	the	right-hand	part	of	Equation	4.60	vanish,	that	is,	〈	E×H	〉=〈
E*×  H*	〉=0.	Indeed,	for	the	first	term,

〈	E×H	〉=(E0×H0)e−2ik⋅rT∫0Te2iωtdt=(E0×H0)e−2ik⋅rT12iω(e2iωT−1)=0, (4.61)

since	ω=2π/T	and	e2πin=1,	where	n	is	an	integer.	For	the	second	term,	the	calculations	are
similar.	As	a	result,	the	average	energy	flux	density	is	expressed	as

〈	S	〉=14〈	E*× H+E×H*	〉. (4.62)

We	must	take	the	real	part	of	this	expression.	One	can	see	that	the	real	parts	of	both	terms
are	equal.	Since	the	electric	and	magnetic	fields	given	by	Equation	4.59	are	complex,	they
can	 be	 represented	 as	 E=E1+iE2	 and	 H=H1+iH2,	 so	 their	 complex	 conjugates	 are
E*=E1−iE2	and	H*=H1−iH2.	After	operation	of	multiplication	for	each	term	in	the	right-
hand	side	of	Equation	4.62,	we	get	for	their	real	parts

Re(E*×H)=Re(E×H*)=E1×H1+E2×H2. (4.63)

Thus,	the	average	energy	flux	density	can	be	represented	in	a	form



〈	S	〉=12Re(E×H*). (4.64)

3.	The	amount	of	energy	transported	by	a	wave	is	often	defined	as	the	wave	intensity	I.	By
definition,	it	is	the	energy	flux	density	averaged	over	one	period.	Using	Equation	4.58	for
the	electric	and	magnetic	fields	and	substituting	S	=	vu,	we	get

I=〈	S	〉=1T∫0TS(t)dt=vκε0E02〈	cos2(ωt−k⋅r)	〉=κε0κmμ0E022=E022Z. (4.65)

Thus,	the	wave	intensity	is	proportional	to	the	square	of	the	electric	field	amplitude.	The
units	 of	 the	 intensity	 in	 the	 SI	 unit	 are	 the	 same	 as	 for	 the	 energy	 flux	 density,
J/(s⋅m2)=W/m2.

Electromagnetic	waves	 transport	energy	as	well	as	momentum.	The	wave	momentum
density	(i.e.,	the	momentum	per	unit	volume)	is	given	by

π = Sv2=1v2E×H. (4.66)

Due	to	its	momentum,	an	electromagnetic	wave	exerts	pressure	on	any	surface	on	which
the	wave	is	incident.	Let	a	plane	wave	be	incident	normally	to	the	surface	that	completely
absorbs	the	wave.	The	pressure	on	the	surface	is	equal	to	the	force	acting	on	the	surface
divided	by	its	area	A,	that	is,

P=FA=1AΔpΔt=ΔzπΔt=vπ=u. (4.67)

In	 the	 case	 of	 a	 mirror	 surface	 that	 totally	 reflects	 the	 incident	 wave,	 the	 momentum
transmitted	to	the	surface	is	doubled;	the	pressure	P	=	2u.	Let	us	estimate	the	value	of	this
pressure	 for	 a	 laser	 beam.	 Its	 electromagnetic	 wave	 in	 vacuum	 is	 characterized	 by	 an
electric	field	E0	=	103	V/m:

P=2ε0E02=2×8.85×10−12 ×106=1.8×10−5Pa. (4.68)

This	is	10	orders	of	magnitude	smaller	than	the	normal	atmospheric	pressure	(P0	≈	105	Pa)
(pascal	 [Pa]	 is	 the	 SI	 unit	 of	 pressure).	 Nevertheless,	 the	 pressure	 produced	 by	 an
electromagnetic	wave	 is	 easily	 detected	 and	 can	 be	 experimentally	measured	with	 high
accuracy.

Exercise	4.5
Consider	a	plane	electromagnetic	wave	incident	on	a	plane	surface	of	a	weakly	conducting
nonmagnetic	medium.	Using	Ohm’s	 law	 (in	differential	 form)	 and	Ampere’s	 force,	 find
the	relation	between	momentum	and	energy	of	an	electromagnetic	wave.

Solution.	 The	wave’s	 electric	 field	 generates	 in	 the	 conducting	medium	 a	 current	 with
density	j	=	σE.	The	wave’s	magnetic	field	exerts	on	this	current	Ampere’s	force:

F=I(I×B)=μ0I(I×H),

where



l	 is	a	vector	along	the	current	(or	along	vector	E)	and	its	magnitude	is	equal	 to	 the
length	of	the	medium	in	the	direction	of	current
I	is	current	in	the	medium	that	is	generated	by	the	electric	field	E	of	the	wave
B	=	μ0H

The	 current	 density	 is	 determined	 by	 the	 equation	 j	 =	 I/A,	 where	 A	 is	 the	 area
perpendicular	to	the	vector	l	through	which	the	current	flows.	The	force	per	unit	volume
can	be	written	as

f=FVol=FAl=μ0IA(Il×H)=μ0(j×H)=μ0σ(E×H),

where	we	took	into	account	that	l/l	is	the	unit	vector	in	the	direction	of	the	current	j=(I/A)
(l/l)=σE.	The	following	linear	momentum	is	transferred	from	the	electromagnetic	wave	to
the	conducting	surface	layer	during	the	time	Δt:

ΔpVol=fΔt=μ0σ(E×H)Δt.

We	note	that	we	used	Newton’s	law	in	this	equation	and	the	momentum	is	written	per	unit
volume.	 The	 conducting	 layer	 during	 Δt	 absorbs	 energy	 of	 electromagnetic	 wave:
ΔU/Vol=u=σE2Δt.	Let	us	divide	these	two	expressions:

|	Δp	|u=μ0σEHΔtσE2Δt=μ0HE=ε0μ0=1c,

where	we	took	into	account	that	ε0E=μ0H	for	the	amplitudes	of	the	wave	fields.

4.7				STANDING	WAVES
In	 the	 traveling	waves	 considered	 earlier,	 the	 electric	 and	magnetic	 fields	 at	 each	 point
oscillate	 in	 phase.	However,	 this	 property	 of	 electromagnetic	waves	 is	 not	 universal.	A
type	of	waves	known	as	“standing	waves”	is	characterized	by	a	time	phase	shift	between
the	 electric	 field	 and	 the	 magnetic	 field.	 Standing	 waves	 occur	 when	 two
counterpropagating	 monochromatic	 waves	 with	 the	 same	 frequency,	 amplitude,	 and
polarization	 interfere.	 For	 example,	 this	 occurs	when	we	 have	 complete	 reflection	 of	 a
wave	from	a	surface.

In	 the	 following	 text,	we	 obtain	 expressions	 for	 the	 electric	 and	magnetic	 fields	 in	 a
standing	wave.	For	a	wave	propagating	in	the	positive	z-axis,	the	fields	are	given	by	the
equations

Ex=E0 cos(ωt−kz),Hy=H0 cos(ωt−kz). (4.69)

Here,	we	 have	 taken	 into	 account	 that	E,	H,	 and	k	 form	 right-hand	 system	 of	 vectors.
Therefore,	for	the	reflected	wave	traveling	along	the	negative	z-axis,	vector	E	or	H	must
have	 different	 directions	 to	 those	 of	 the	 vectors	 of	 the	 incident	 wave.	 The	 field
components	for	a	reflected	wave	can	be	written	as

Ex=−E0 cos(ωt+kz),   Hy=H0 cos(ωt+kz). (4.70)

When	we	add	the	incident	and	reflected	waves,	we	get

Ex=−2E0 sinωt sinkz,   Hy=2H0 cosωt coskz. (4.71)



These	 field	 equations	 describe	 a	 standing	 electromagnetic	 wave.	 One	 can	 see	 that	 the
wave	is	not	propagating,	since	the	factor	(t	±	z/v)	typical	of	a	running	waves	is	absent	in
Equation	4.71.	The	presence	of	the	factors	cos	ωt	and	sin	ωt	in	Equation	4.71	shows	 that
the	 electric	 and	magnetic	 fields	 at	 any	 point	 are	 oscillating	 at	 the	 same	 frequency.	 The
factors	2E0	sin	kz	and	2H0	cos	kz	describe	the	amplitudes	of	the	field	oscillations	at	point
z.	 The	 amplitude	 dependence	 on	 z	 is	 harmonic.	At	 the	 points	 for	which	 sin	 kz	 =	 0,	 the
electric	field	vanishes.	These	points	are	called	electric	field	nodes.	At	the	points	for	which
sin	kz	=	±1,	the	amplitude	of	the	electric	field	oscillations	is	maximum.	These	points	are
called	 electric	 field	 antinodes.	 The	 distance	 between	 neighboring	 nodes	 (or	 between
neighboring	 antinodes)	 equals	 to	 half	 of	 the	 wavelength.	 In	 a	 standing	 wave,	 the
oscillating	electric	and	magnetic	field	vectors	are	shifted	in	phase	by	π/2	in	both	space	and
time	as	it	is	shown	in	Figure	4.11.

FIGURE	4.11	Example	of	a	standing	wave:	change	of	electric	field	in	time	(a)	and	shift	of
oscillating	electric	and	magnetic	fields	in	phase	by	π/2	(b).

The	energy	flux	density	of	an	electromagnetic	wave	is	described	by	the	Poynting	vector
S	=	E	×	H.	Therefore,	 there	 is	no	energy	flux	at	points	where	either	E	or	H	 is	equal	 to
zero.	The	electric	field	antinodes	coincide	with	 the	nodes	of	 the	magnetic	field	and	vice
versa;	hence,	 the	 flow	of	energy	 in	a	 standing	wave	 through	 the	nodes	and	antinodes	 is
zero.	Therefore,	the	energy	in	a	standing	wave	transforms	from	pure	electric	energy	with
E	 vector	 maxima	 at	 the	 electric	 field	 antinodes	 into	 magnetic	 energy	 with	 H	 vector
maxima	in	the	magnetic	field	antinodes.	These	maxima	are	shifted	in	space	by	a	quarter	of
the	wavelength	(λ/4).	Therefore,	 in	a	standing	wave,	we	have	no	energy	transport.	Since
the	oscillations	of	E	and	H	are	not	synchronized	in	phase,	relation	(4.22)	is	valid	only	for
the	maximum	amplitudes	of	fields,	that	is,	κε0E0=κmμ0H0.

Exercise	4.6
Two	 plane	 waves	 with	 electric	 fields	 E1=A sin(ωt−kx)	 and	 E2=A sin(ωt+kx)	 have	 the
same	 angular	 frequencies	 ω	 =	 4.00	 ×	 1015	 s−1	 propagate	 in	 opposite	 directions	 in	 an
isotropic	medium	with	index	of	refraction	n	=	1.50.	The	waves	interfere	with	each	other
and	form	a	standing	wave.	Find	the	magnitude	of	the	net	electric	field	vector	at	the	instant
t0	=	(π/16)	×	10−15	s	and	the	amplitude	of	the	standing	wave’s	electric	field	at	all	points
between	nodes	separated	by	a	distance	l	=	λ/8	from	each	other.

Solution.	A	standing	wave	is	formed	when	waves	E1(t,	x)	and	E2(t,	x)	are	added	as	a	result
of	interference:

E(t,x)=E1(t,x)+E2(t,x)=−2A sinkx cosωt.



From	this	expression	 for	 standing	wave,	we	can	see	 that	at	each	point,	 the	electric	 field
oscillates	with	angular	frequency	ω.	The	oscillation	amplitude	at	point	x	is

A(x)=2A|	sinkx	|.

Therefore,	at	points	where	sin	kx	=	0,	the	oscillation	amplitude	vanishes.	These	points	are
the	electric	 field	nodes	of	 standing	wave.	The	coordinate	of	 the	 first	node	can	be	 found
from	the	expression	kx1	=	0	and	the	second	node	at	kx2	=	π.	Taking	into	account	that	k	=
2π/λ,	we	get	x2	=	λ/2.	The	distance	between	 two	successive	nodes	 is	equal	 to	Δx	=	λ/2,
where

λ=v×T=2πcωn    and   Δx=πcωn.

Therefore,	in	the	interval	between	two	successive	nodes,	we	can	have	five	points	separated
by	a	distance	l	=	λ/8.	The	coordinates	of	these	points	are	xm	=	mλ/8,	m	=	0,	1,	2,	3,	4,	….

The	amplitude	of	the	electric	field	oscillations	at	these	points	is	given	by	the	condition

Am=2A|	sinkmλ8	|=2A|	sin(mπ4)	|=2A sin(mπ4),

that	is,

A0=0,  A1=2A,  A2=2A,  A3=2A,  A4=0.

The	magnitude	 of	 the	 standing	wave’s	 electric	 field	 vector	 at	 t0	 can	 be	 found	 from	 the
equation	 of	 the	 standing	 wave	 (below	 here	 we	 take	 into	 account	 that	 ωt0=π/4	 and
cos(π/4)=2/2:

E(t0,xm)=2A sin(mπ4)cos(ωt0)=2A sin(mπ4).

4.8				INTERFERENCE	AND	COHERENCE	OF
ELECTROMAGNETIC	WAVES

1.	When	electromagnetic	waves	generated	by	a	number	of	sources	propagate	in	the	same
space,	 their	 fields	 are	 superposed	 at	 each	 point.	 If	 two	 fields	 have	 the	 same	 oscillation
direction	and	the	same	frequency	ω,	the	amplitude	of	the	resultant	oscillation	depends	on
their	phase	difference.	The	resulting	amplitude	can	vary	from	a	minimum	value	equal	to
the	difference	of	the	two	wave	amplitudes	to	a	maximum	value	equal	to	their	sum.	If	the
amplitudes	 of	 two	waves	 are	 equal	 and	 the	 oscillations	 have	 zero	 phase	 difference,	 the
amplitude	of	the	resultant	wave	is	doubled,	and	thus,	the	wave	intensity	is	quadrupled.	In
contrast,	if	the	phases	of	the	waves	are	shifted	by	π,	they	cancel	out	each	other.	The	result
of	wave	superposition	varies	 from	point	 to	point	 in	 the	overlap	area.	Interference	 is	 the
phenomenon	when	the	superposition	of	two	or	more	waves	leads	to	a	redistribution	of	the
wave	energy	in	space,	that	is,	the	appearance	of	local	maxima	and	minima	of	the	intensity
at	various	points.

An	 interference	 pattern	 cannot	 be	 obtained	 with	 any	 type	 of	 sources.	 For	 example,
switching	 on	 two	 lamps	 instead	 of	 one	 increases	 the	 illumination	 but	 does	 not	 cause	 a
redistribution	 of	 energy	with	 the	 appearance	 of	 intensity	maxima	 and	minima,	 because
these	 sources	 are	not	 coherent.	Only	 coherent	waves,	 that	 is,	 the	waves	with	 a	 constant
phase	difference	during	the	observation	period,	exhibit	 interference.	For	coherent	waves,
the	phase	difference	is	always	constant.	We	note	that	the	phases	of	all	natural	light	sources



vary	 randomly	 with	 a	 high	 rate.	 Therefore,	 the	 phase	 difference	 of	 two	 natural	 light
sources	 also	 varies	 randomly	 in	 time.	 This	 leads	 to	 rapid	 changes	 in	 the	 interference
pattern.	 Radiation	 detectors	 are	 not	 able	 to	 detect	 such	 fast	 changes	 but	 instead	 are
sensitive	only	 to	 the	 intensity	averaged	over	 time.	Thus,	using	natural	 light	 sources,	we
detect	simply	the	sum	of	the	intensities	of	the	two	sources.

Consider	two	plane	electromagnetic	waves	of	the	same	linear	polarization	that	interfere
at	some	point	with	position	vector	r:

E1=eE10cos(ω1t−k1⋅r+φ10),E2=eE20cos(ω2t−k2⋅r+φ20). (4.72)

At	this	point,	the	electric	fields	are	given	by

E1=eE10cos(ω1t+φ1),E2=eE20cos(ω2t+φ2), (4.73)

where	φi(r)=φi0−ki⋅r	are	the	phases	at	the	given	point.	The	resultant	net	electric	field	is	E
=	E1	+	E2	and,	in	accordance	with	Equation	4.65,	the	wave	intensity	is	proportional	to	the
square	of	the	electric	field	averaged	over	the	time:

I=〈	S	〉~〈	E2	〉=〈	(E1+E2)2	〉=〈	E12	〉+〈	E22	〉+2〈	E1⋅E2	〉. (4.74)

The	first	two	terms	on	the	right-hand	side	define	the	intensities	of	the	waves	I1	and	I2.	The
interference	is	observed	if	the	third	term	is	not	zero.	For	that	to	occur,	E1	and	E2	cannot	be
perpendicular.

Let	 us	 consider	 the	 interference	 of	 two	 monochromatic	 plane	 waves	 E1	 and	 E2
assuming	 that	 they	 are	 parallel,	 their	 angular	 frequencies	 ω1	 =	 ω2	 =	 ω	 and	 their	 wave
vectors	|	k1	|=|	k2	|=k.

To	be	able	to	observe	interference,	the	phase	difference	Δφ(r)=φ2(r)−φ1(r)	between	the
two	waves	at	a	given	point	r	must	be	time	independent.

The	 magnitude	 of	 the	 resultant	 electric	 field	 E0=|	 E0	 |	 can	 be	 determined	 from	 the
vector	diagram	shown	in	Figure	4.12.	One	can	see	that

E02=E102+E202+2E10E20 cos(φ2−φ1). (4.75)

FIGURE	4.12	Vector	diagram	for	sum	of	vectors	E1	and	E2.

Thus,	for	the	resultant	intensity	at	the	given	point,	we	come	to

I=I1+I2+2I1I2〈	cos(φ2−φ1)	〉. (4.76)



In	sources	for	which	the	waves	are	emitted	by	individual	atoms	that	are	independent	from
each	 other,	 φ1	 and	 φ2	 change	 independently.	 Therefore,	 the	 phase	 difference	 Δφ
continuously	 changes	 taking	 various	 values	 with	 equal	 probability.	 As	 a	 result,
cos(φ2−φ1)	averaged	over	time	is	equal	to	zero,	that	is,

〈	cos(φ2−φ1)	〉=0. (4.77)

In	this	case,	the	total	intensity	of	the	resultant	wave	is	just	the	sum	of	the	intensities	of	the
individual	waves,	that	is,	no	interference	is	observed.

In	 contrast,	 if	 the	 phase	 difference	 at	 each	 point	 remains	 constant	 over	 time,	 the
intensity	 at	 different	 points	 differs	 from	 the	 sum	 of	 the	 individual	 intensities	 of	 the
combined	waves,	that	is,	interference	takes	place.

At	 different	 points,	 the	 superposition	 of	 waves	 depends	 on	 the	 factor	 cos	 Δφ.	 In
particular,	when	cos	Δφ	=	1,	the	net	intensity	is	maximum:

Imax=I1+I2+2I1I2=(I1+I2)2. (4.78)

We	get	maximum	intensity	when

Δφ=φ2−φ1=2πm, (4.79)

where	m	=	0,	1,	2,	….	Integer	n	is	known	as	the	interference	order.

At	points	with	cos	Δφ	=	−1,	the	intensity	is	minimum	and	equal	to

Imin=I1+I2−2I1I2=(I1−I2)2. (4.80)

Minima	in	intensity	are	observed	at	points	for	which

Δφ=φ2−φ1=(2m+1)π. (4.81)

Equations	4.79	and	4.81	give	 the	 conditions	 for	 the	observation	of	 interference	maxima
and	minima,	respectively.

The	wave	phase	at	a	point	depends	on	the	distance	traveled	by	the	wave.	For	coherent
waves	propagating	along	the	z-axis,	the	interfering	wave	phases	are	given	by

φi=ωt−kzi=ωt−ωczi=ωt−2πλzi, (4.82)

where	λ	 is	 the	wavelength	 in	vacuum.	The	value	Λ=z2−z1	 is	called	 the	path	difference.
The	phase	difference	and	the	path	difference	are	related	as	follows:

Δφ=2πλΛ. (4.83)

Taking	into	account	Equations	4.79	and	4.81,	the	conditions	for	interference	maxima	and
minima	can	be	written	as



Λ=mλ                    intensity maxima,Λ=(2m+1)λ/2   intensity minima. (4.84)

To	generate	coherent	waves,	various	methods	based	on	splitting	waves	originating	from	a
single	source	into	two	or	more	waves	are	used.	Such	waves	are	coherent	and	can	be	used
to	create	an	interference	pattern.	Coherent	light	waves	are	emitted	by	laser	sources.

2.	In	connection	with	interference	of	coherent	waves,	we	would	like	to	point	out	that	it	is
necessary	 to	 distinguish	 temporal	 and	 spatial	 coherence.	 The	 process	 of	 interference
discussed	earlier	is	an	idealization,	since	monochromatic	wave

E=Em cos(ωt−kr+φ)

with	constant	Em,	ω,	k	and	φ	is	an	abstraction.	Any	real	wave	is	a	result	of	a	superposition
of	oscillations	of	all	possible	frequencies	(wavelengths)	in	a	finite	range	of	frequencies	Δω
and	wave	numbers	Δk.	The	amplitude	Em	and	phase	φ	undergo	random	changes	with	time.
If	we	 consider	 interference	 of	 two	waves	 at	 any	 particular	 point	 in	 space	 and	 take	 into
account	that	frequencies	and	phases	change	with	time,	the	electric	field	of	each	of	the	two
waves	can	be	presented	as

E1(t)=E1m(t)cos[	ω1(t)t+φ1(t)	],E2(t)=E2m(t)cos[	ω2(t)t+φ2(t)	].

Further,	 we	 assume	 that	 the	 amplitudes	 E1m	 and	 E2m	 are	 constants.	 In	 this	 case,	 the
frequency	variation	and	phase	change	can	be	reduced	to	phase	variation	only.	Indeed,

E(t)=Em cos[	ω0t+(ω(t)−ω0)t+φ(t)	]=Em cos[	ω0t+φ′(t)	],

where

ω0	is	the	central	frequency	of	the	wave
φ′(t)=(ω(t)−ω0)t+φ(t)

In	 the	 resulting	 function,	only	 the	phase	oscillations	undergo	 random	changes.	The	 time
τcoh	during	which	the	random	variation	of	the	phase	φ′(t)	changes	its	value	by	an	amount
of	 the	order	of	π	 is	called	 the	coherence	 time.	During	 this	 time,	 the	oscillation	 loses	 its
initial	phase	and	ceases	to	be	coherent.

The	distance	lcoh=c⋅τcoh	traveled	by	the	wave	during	time	τcoh	is	called	the	coherence
length.	The	coherence	length	is	defined	as	the	distance	at	which	the	random	change	of	the
phase	becomes	equal	to	π.	Coherence	of	the	oscillations	that	interfere	at	the	same	point	in
space	but	changes	with	time	is	called	temporal	coherence.

With	 the	 superposition	 of	 light	 from	 two	 incoherent	 sources,	 the	 interference	 is	 not
observed.	This	means	that	independent	sources	are	incoherent,	even	though	their	emission
is	monochromatic.	The	reasons	are	in	the	mechanism	of	light	emission	by	the	atoms	of	the
light	source.	Excited	atom	emits	a	single	pulse	(a	wave	train)	for	a	short	period	of	time	τ	≈
10−8	 s.	Having	 spent	 energy	 through	 radiation,	 the	 atom	 returns	 to	 a	 lower	 energy	 state
that	 is	almost	always	 the	 lowest	energy	state	known	as	 the	ground	state.	After	a	certain
period	of	time,	the	atom	can	be	excited	again,	receiving	energy	from	an	outside	source	and
once	 again	 radiates.	 Thus,	 the	 observation	 of	 the	 interference	 of	 light	 is	 possible	 only
when	the	optical	path	difference	is	smaller	than	the	coherence	length	of	the	light	source.
The	closer	a	wave	is	to	a	monochromatic	wave,	the	smaller	is	the	width	of	its	frequency



spectrum	 and	 the	 longer	 is	 its	 coherence	 time	 and	 therefore	 the	 coherence	 length.	 The
coherence	of	the	oscillations	(which	is	determined	by	the	degree	of	monochromaticity	of
the	waves)	that	occur	at	the	same	point	in	space,	as	we	already	mentioned	earlier,	is	called
temporal	coherence.

The	 frequency	 spectrum	 of	 a	 real	 wave	 includes	 frequencies	 from	 ω0−Δω/2  to  
ω0+Δω/2.	Such	a	wave	over	time

Δt≪τcoh=2πΔω

can	 be	 approximately	 considered	 as	 a	 monochromatic	 wave	 with	 frequency	 ω0.	 For
example,	 for	 the	 visible	 sunlight,	 τcoh≈10−14s,	 and	 for	 lasers	 of	 continuous	 operation,
τcoh≈10−5s.

Now	let	us	 take	 into	account	 that	 the	wave	number	k	=	nω/c,	where	n	 is	 the	 index	of
refraction.	The	 frequency	variation	Δω	 leads	 to	 a	 spread	 of	 values	 of	 the	wave	number
Δk=k(Δω/ω).	Thus,	the	temporal	coherence	is	related	to	the	variation	of	the	magnitude	of
the	wave	vector	k	of	the	wave.

Along	with	 temporal	 coherence,	 there	 is	 a	 spatial	 coherence	 of	 the	wave	 too.	 Spatial
coherence	 is	associated	with	 the	 range	of	directions	of	 the	wave	vector	k.	Coherence	of
oscillations	that	occur	at	the	same	time	but	at	different	points	in	a	plane	perpendicular	to
the	 direction	 of	 propagation	 of	 the	 wave	 is	 called	 spatial	 coherence.	 The	 two	 sources
(with	 certain	 degree	 of	 monochromaticity	 of	 light)	 of	 sizes	 that	 allow	 observing
interference	are	called	spatially	coherent.

Exercise	4.7
A	plane	monochromatic	light	wave	of	wavelength	λ0	=	0.50	μm	is	incident	normally	on	an
opaque	 diaphragm	with	 two	 long	 narrow	 slits	 separated	 by	 a	 distance	d	 =	 2.00	mm.	A
system	 of	 interference	 fringes	 is	 formed	 on	 a	 screen,	 which	 is	 placed	 behind	 the
diaphragm	at	a	distance	L	=	1.00	m.	Find	the	spacing	of	the	resulting	interference	fringes.

Solution.	The	two	narrow	slits	can	be	considered	as	two	sources	of	coherent	waves,	which
interfere	at	the	screen.	The	width	of	single	interference	fringe	Δx	is	equal	to	the	distance
between	 two	 successive	 minima	 at	 the	 screen	 (or	 between	 two	 successive	 maxima)
Δx=xn+1−xn	(see	Figure	4.13).	Using	Figure	4.13,	we	can	write

xn+1=Ltanθn+1,    xn=Ltanθn.

If	we	include	the	angles	θn+1	and	θn	in	the	equation	for	interference	minima,	we	get

d sinθn+1=(2(n+1)+1)λ02,    d sinθn=(2n+1)λ02.

FIGURE	4.13	Light	interference	from	two	narrow	slits.



According	 to	 the	 conditions	 of	 experiment	 L	≫	 d	 and	 for	 small	 angles,	 the	 following
equation	is	valid:	sin	θ	≈	tan	θ.	Taking	into	account	that	sin	θ	≈	tan	θ	and	replacing	tan	θ
by	sin	θ,	we	get

Δx=L(tanθn+1−tanθn)≈L(sinθn+1−sinθn)       =L[	2(n+1)+1−(2n+1)	]λ02d=Lλ0d.

We	note	that	the	spacing	of	two	successive	interference	maxima	(interference	fringe)	does
not	depend	on	n.	The	calculation	gives	us

Δx=Lλd=1×0.50×10−62.50×10−3m = 0.20 mm.

PROBLEMS
4.1	The	operating	wavelength	λ	of	a	radar	is	0.30	m.	The	radar	emits	250	pulses
per	second	with	pulse	duration	τ	=	5.00	μs.	How	many	oscillations	are	contained
in	each	pulse	and	what	is	the	maximum	range	of	the	radar?	(Answer:	n	=	5.00	×
103	oscillations,	L	=	6.00	×	105	m.)
4.2	A	 plane	monochromatic	 electromagnetic	wave	 of	 frequency	 f	 =	 200	MHz
propagates	 along	 the	 z-axis.	 At	 point	 z0,	 the	 electric	 field	 is	 given	 by
E(t,z0)=Em sin(2πft−kz0)	where	the	amplitude	Em	is	equal	to	75.0	mV/m.	Write
expressions	for	the	electric	field	for	points	that	are	located	at	a	distance	of	2.00
m	 from	 the	given	point	 z0	 along	 the	positive	 and	negative	directions	of	 the	 z-
axis.	(Answer:	E(t,z0±2)=75.0×10−3sin[	4π(108t−((z0±2)/3))	]V/m.)
4.3	An	 electromagnetic	 plane	wave	with	 electric	 field	 vector	E(t,r)=Em sin(ωt
−k⋅r)	propagates	in	vacuum.	Find	the	magnetic	field	vector	at	t	=	T/4	at	a	point
with	 position	 vector	 whose	 magnitude	 r	 =	 (5/4)λ	 (a)	 if	 the	 direction	 of	 the
position	vector	coincides	with	the	direction	of	wave	vector	and	(b)	the	position
vector	forms	an	angle	β	=	π/6	with	the	direction	of	the	wave	vector.	Here,	T	and
λ	 are	 the	 period	 and	 the	wavelength	 of	 the	wave,	 respectively.	 (Answer:   (a) 
H(T/4,r)=0,  (b) H(T/4,r)=k×Emkε0μ032.)
4.4	Two	plane	electromagnetic	waves	propagate	 in	vacuum.	One	of	 the	waves
propagates	 along	 the	 x-axis,	 while	 the	 other	 propagates	 along	 the	 y-axis.	 The
corresponding	electric	fields	are	given	by

E1(t,r)=Em sin(ωt−kx←x),      E2(t,r)=Em sin(ωt−kyy)

where	kx	=	ky	=	k.	Both	waves	are	linearly	polarized	along	the	z-axis.	Find	 the
average	 value	 of	 the	 energy	 density	 flux	 in	 the	 plane	 x	 =	 y.	 (Note	 that	 both
waves	 have	 electric	 field	 amplitude	 Em	 in	 the	 same	 direction,	 namely,	 in	 z
direction.	Answer:	〈	S	〉=2ε0/μ0(Em)2.)
4.5	Write	 general	 expressions	 for	 the	 electric	 and	 magnetic	 fields	 of	 a	 plane
wave	 propagating	 along	 one	 of	 the	 coordinate	 axes	 (e.g.,	 along	 the	 z-axis)	 as
well	 as	 for	 the	 Poynting	 vector	 of	 the	 wave	 and	 the	 average	 flux	 density.
Assume	 that	 a	 plane	with	dimensions	 substantially	 larger	 than	 the	wavelength
serves	 as	 the	 source	 of	 plane	 waves.	 The	 entire	 surface	 of	 the	 plane	 radiates
harmonic	wave	along	the	direction	perpendicular	to	the	plane.	The	electric	field
vector	oscillates	 in	 this	plane	as	E(t)	=	A	 sin	ωt.	 (Part	of	 the	answer:	Average
flux	density	Sz=(1/2)ε0/μ0A2.)



4.6	When	natural	light	passes	through	a	system	of	two	liner	polarizers	that	have
parallel	 polarization	 axes,	 its	 intensity	 is	 reduced	 by	 50%.	 The	 intensity
decreases	 by	 an	 additional	 factor	 of	 two	when	 a	 quartz	 plate	 is	 placed	 in	 the
beam	path	between	the	polarizers.	At	what	angle	has	the	polarization	axis	of	the
beam	 turned	 inside	 the	 quartz	 plate?	 Neglect	 absorption.	 (Answer:	 α = ±
(π/4)±nπ,  where n=0,1,2,….)
4.7	 A	 plane	monochromatic	 wave	 is	 incident	 normally	 on	 a	 plane	 with	 three
identical	 parallel	 slits.	 Using	 the	 principle	 of	 superposition,	 determine	 the
angular	distribution	of	the	intensity	of	the	light	transmitted	through	the	slits	if	all
the	 slits	 have	 a	 width	 equal	 to	 b,	 and	 the	 distance	 between	 the	 centers	 of
consecutive	 slits	 is	 d	 (here	 a	 +	 b	 =	 d),	 and	 the	 wavelength	 is	 equal	 to	 λ.
Determine	the	angular	position	of	minima	from	single	slit	and	additional	minima
due	 to	 interference	 from	 three	 slits.	 (Part	 of	 the	 answer :  
The	angular	distribution	of	intensity	has	the	following	form:   I=I0sin2(πbλsinφ)
(πbλsinφ)2[	 2cos(2πdλsinφ)+1	 ]2=I0sin2(πbλsinφ)sin2(3πdλsinφ)
(πbλsinφ)2sin2(πdλsinφ).)
4.8	Determine	the	pressure	exerted	by	a	monochromatic	light	of	frequency	f	that
is	incident	onto	the	surface	with	area	A	with	the	energy	reflectance	coefficient	R
=	0.50.	The	angle	of	incidence	of	light	α	=	60°	and	the	incident	light	intensity	I
=	2.00	kW/m2.	(Answer:	P	=	5.00	×	10−6	Pa.)
4.9	 In	 natural	 light,	 the	 vibrations	 of	 the	 associated	 electric	 field	 at	 different
directions	 have	 the	 same	 amplitude	 and	 are	 distributed	 with	 the	 same
probability.	 Show	 that	 natural	 light	 can	 be	 represented	 as	 a	 sum	 of	 two
noncoherent	 waves	 polarized	 in	 mutually	 perpendicular	 planes	 and	 have	 the
same	intensity.
4.10	A	 plane	wave	 of	 frequency	ω	 and	 electric	 field	 amplitude	E0	 is	 incident
normally	on	the	reflective	surface	of	a	mirror.	Determine	the	position	of	nodes
and	antinodes	of	the	electric	and	magnetic	fields	of	the	standing	wave,	which	is
formed	by	the	superposition	of	the	incident	and	the	reflected	waves.
4.11	A	plane	monochromatic	wave	of	angular	frequency	ω	is	incident	on	a	thin
film	with	 a	 refractive	 index	 n	 at	 an	 angle	 α	 with	 respect	 to	 the	 film	 normal.
Determine	the	minimum	(nonzero)	film	thickness	at	which	the	intensity	maxima
or	minima	 in	 the	 reflected	 light	 are	 observed.	 (Answer:  dmin=λ/(4n2−sin2α)   
to	 observe	 intensity	 maxima;  d′min=λ/(2n2−sin2α)  
to	observe	intensity	minima.)
4.12	 Using	 the	 principle	 of	 superposition,	 determine	 the	 intensity	 of	 a	 wave
comprising	 two	 linearly	 polarized	 plane	 waves	 propagating	 along	 the	 same
direction	in	a	transparent	nonmagnetic	medium	(σ	=	0,	μ	=	1):

E1=e1E0 cos(ωt−kz),E2=e2E0 cos(ωt−kz).

Unit	 vectors	 e1	 and	 e2	 indicate	 the	 directions	 of	 the	 wave	 polarization.	 In
general,	these	vectors	are	different.



5Electromagnetic	Fields	and	Waves	at	the
Interface	between	Two	Media

In	solving	many	problems	in	electrodynamics,	we	would	like	to	know	the	electromagnetic
field	in	a	given	spatial	region.	Such	problems	include,	for	example,	the	design	of	generator
of	high-frequency	electromagnetic	waves	and	the	development	of	various	wireless	devices
and	power	transmission	lines.	For	the	calculation	of	the	electromagnetic	field	in	each	case,
it	 is	 required	 to	 solve	 the	 proper	 electrodynamic	 problem	 taking	 place	 at	 the	 interfaces
between	different	media.	The	practical	problems	of	determining	the	fields	or	their	sources
are	usually	quite	challenging	as	the	interfaces	may	have	complicated	geometry.

The	solution	of	such	problems	can	be	often	obtained	only	by	introducing	a	number	of
simplifying	assumptions.	Therefore,	in	practice,	instead	of	the	real	problem,	some	model
problem,	which	approximates	the	real	situation,	is	considered.	Examples	of	such	problems
are	the	use	of	the	point-charge	model	and	the	line	currents	in	determining	the	interaction
forces	 between	 charged	 objects	 and	 current-carrying	 conductors,	 the	 calculation	 of	 the
electric	 field	 in	 a	 parallel-plate	 capacitor	 and	 the	 magnetic	 field	 inside	 a	 solenoid
neglecting	 the	 edge	 effects,	 and	 the	 study	 of	 transients	 in	 circuits	 with	 capacitances	 or
inductances	neglecting	the	finite	velocity	of	propagation	of	an	electromagnetic	signal.	In
this	 chapter,	 in	order	 to	determine	 the	amplitude	and	energy	 reflection	and	 transmission
coefficients	of	an	electromagnetic	wave	at	an	interface,	we	use	one	of	the	simplifications
—plane	monochromatic	wave.

5.1				BOUNDARY	CONDITIONS	AND	INVERSE
BOUNDARY	VALUE	PROBLEMS	IN
ELECTROMAGNETISM

The	 subject	 of	 this	 book	 is	 classical	 electromagnetism	 (also	 referred	 to	 as	 “classical
electrodynamics”)	 that	 deals	 with	 electromagnetic	 phenomena—whenever	 the	 relevant
length	scales	and	field	strengths	are	large	enough,	the	quantum	mechanical	effects	can	be
ignored.	For	the	solution	of	many	problems	in	electromagnetism,	it	is	necessary	to	know
the	electromagnetic	field	in	a	specific	region	of	space.	This	task	could	involve	the	design
of	radiating	systems	(antennas),	the	maintenance	of	electromagnetic	compatibility	of	radio
devices,	and	the	development	of	various	power	transmission	lines.	For	the	calculation	of
the	electromagnetic	field	in	each	specific	case,	it	is	necessary	to	solve	the	corresponding
problem.	There	are	 two	wide	 types	of	problems	 in	electromagnetism:	direct	and	 inverse
problems.	In	direct	problems,	we	determine	 the	field	 that	 is	created	 in	a	given	region	of
space	 for	 a	 known	 spatial	 distribution	 of	 the	 field	 sources.	 In	 inverse	 problems,	 on	 the
other	hand,	we	determine	 the	source	system	 that	creates	an	electromagnetic	 field	with	a
given	structure.

Direct	problems	in	electromagnetism	are	often	formulated	as	boundary	value	problems
consisting	 of	 finding	 the	 electromagnetic	 field	 that	 satisfies	 certain	 conditions	 at	 the
boundary	 of	 the	 considered	 medium.	 The	 problems	 of	 determining	 the	 fields	 or	 their



sources	 are	 usually	 rather	 complicated.	 The	 solution	 of	 such	 problems	 can	 be	 obtained
either	 from	 complicated	 numerical	 simulations	 or	with	 the	 introduction	 of	 a	 number	 of
simplifying	assumptions.	Therefore,	in	practice,	instead	of	the	real	problem,	we	consider	a
related	 model	 problem	 that	 in	 its	 essence	 reflects	 the	 real	 situation.	 Examples	 of	 such
problems	 are	 the	 use	 of	 point	 charges	 and	 line	 currents	 in	 determining	 the	 interaction
forces	between	charged	bodies	and	current-carrying	conductors;	 the	determination	of	the
electric	 field	 in	 a	 parallel-plate	 capacitor;	 the	 determination	 of	 the	 magnetic	 field	 in	 a
solenoid,	 where	 we	 neglect	 edge	 effects	 and	 thus	 the	 finite	 propagation	 velocity	 of
electromagnetic	signals;	 the	assumption	that	 the	current	 in	all	parts	of	a	closed	circuit	 is
the	 same;	 and	 the	use	of	 the	model	of	 a	plane	monochromatic	wave	 in	determining	 the
reflection	and	transmission	coefficients	across	the	boundary	between	different	media.

Another	 important	 idealization	 is	 a	model	 that	 represents	 solids,	 liquids,	 and	gases	as
continuous	 media.	 This	 does	 not	 take	 into	 account	 that	 a	 real	 medium	 has	 a	 specific
discrete	structure	and	atomic	(or	molecular)	composition.	The	continuum	model	becomes
inconsistent	in	the	study	of	electromagnetic	phenomena	in	a	matter,	when	the	wavelength
of	 an	 electromagnetic	 wave	 is	 close	 to	 the	 average	 distance	 between	 the	 particles	 of	 a
medium.	The	use	of	the	continuum	model,	when	applicable,	allows	the	use	of	continuous
functions	for	the	mathematical	description	of	the	electromagnetic	phenomena	under	study.
In	this	case,	the	electric	and	magnetic	fields	in	these	media	are	assumed	to	be	continuous
but	 locally	 averaged.	 The	 material	 parameters	 of	 the	 medium—dielectric	 constant,
conductivity,	and	permittivity—are	also	averaged	parameters.

Equations	 3.36,	 written	 in	 integral	 and	 differential	 forms,	 are	 the	 equations	 of	 the
electromagnetic	field	in	a	medium.	Representation	of	these	equations	in	a	differential	form
assumes	that	all	quantities	in	space	and	time	change	continuously.	The	differential	form	of
these	equations	 is	 supplemented	with	 the	boundary	conditions	 for	 the	 tangential	and	 the
normal	 components	 of	 electromagnetic	 fields	 at	 the	 interface	 between	 two	 media.	 For
simplicity,	 we	 restrict	 ourselves	 to	 the	 derivation	 of	 the	 boundary	 conditions	 for	 static
electric	and	magnetic	fields.	Generalization	of	the	derivation	for	the	case	of	time-varying
fields	can	be	carried	out	using	the	integral	form	of	Maxwell’s	equations.

Exercise	5.1
Find	 the	 steplike	 change	 of	 the	 electric	 field	E	 on	 an	 infinitely	 extended	 charged	 plane
with	 surface	charge	density	σ.	Plot	 the	dependence	of	 the	magnitude	of	 the	 field	on	 the
distance	from	the	charged	plane.

Solution.	In	order	to	determine	the	electric	field,	we	will	use	Gauss’s	law.	We	choose	the
surface	of	integration	A	 to	be	cylinder	of	arbitrary	height	whose	axis	 is	perpendicular	 to
the	charged	plane	(see	Figure	5.1).	Let	us	divide	 the	surface	of	 integration	 into	one	side
surface	(curved)	and	two	end	surfaces	(planar).	The	total	flux	of	the	electric	field	through
surface	A	is

ΦE=∮AE⋅dA=∫AsideE⋅dA+2∫AbaseE⋅dA=∫AsideEdA cosαside+2∫AbaseEdA 
cosαbase=2∫AbaseEdA cosαbase=2EAbase.



FIGURE	5.1	Calculation	of	 the	field	of	a	charged	plane	(a)	and	(b)	 the	x-component	of
the	electric	field	versus	x.

Here,	we	have	taken	into	account	the	fact	that	the	flux	through	the	side	surface	is	equal	to
zero	since	on	this	surface	E	⊥	nside	and	cos	αside	=	0.	Here,	nside	is	the	unit	normal	vector.

Because	 of	 the	 symmetry	 of	 the	 problem,	 the	 electric	 field	 lines	 for	 an	 infinitely
extended	and	uniformly	charged	plane	are	normal	to	the	plane	and	point	out	of	the	plane
(for	σ	>	0).	Thus,	E ∥ nbase	and	cos	αbase	=	1.	The	plane	segment	 inside	 the	cylinder	 is
Abase.	The	charge	enclosed	by	the	cylinder	is	q(in)	=	σAbase.	According	to	Gauss’s	law,

ΦE=2EAbase=q(in)ε0=σAbaseε0.

Then,	the	coordinate	dependence	of	the	extended	plane	field	can	be	written	as

E(x)=σ2ε0x|	x	|.

Since	x/|x|	depends	only	on	sign	x	and	does	not	depend	on	the	absolute	value	of	x,	from	the
obtained	expression,	it	follows	that	the	electric	field	of	an	extended	plane	is	homogeneous,
that	 is,	 it	 does	 not	 depend	 on	 the	 distance	 and	 its	 magnitude	 is	 E=σ/2ε0.	 The	 field
distribution	of	a	uniformly	charged	plane	along	the	coordinate	x	is	shown	in	Figure	5.1b.
The	steplike	change	of	the	field	direction	when	passing	through	the	charged	surface	results
in	a	change	of	electric	field,	that	is,

ΔE=E(x)−E(−x)=σε0.

Since	the	electric	field	does	not	depend	on	x,	the	steplike	change	of	the	field	takes	place
directly	at	the	charged	surface.

5.2				BOUNDARY	CONDITIONS	FOR	THE	ELECTRIC
FIELD	OF	AN	ELECTROMAGNETIC	WAVE

We	will	use	Gauss’s	 law	to	obtain	 the	boundary	conditions	for	 the	electric	displacement
vector	D.	We	assume	that	an	interface	between	two	media	has	a	surface	charge	density	σs.
We	 select	 a	 closed	 surface	 in	 the	 form	of	 a	 cylinder	whose	 axis	 is	 perpendicular	 to	 the
interface	and	whose	bases	are	placed	at	equal	distances	from	the	interface	(Figure	5.2).

According	 to	 Gauss’s	 law	 (see	 Equation	 1.80),	 the	 flux	 of	 the	 electric	 displacement
through	any	closed	surface	is	equal	to	the	total	charge	within	this	surface.

Separating	the	fluxes	through	cylinder	bases	(A1	=	A2	=	A)	and	the	curved	surface	(Alat),
we	get

∮AD⋅dA=D2nA−D1nA+〈	Dτ	〉Alat=σsA, (5.1)



where

Alat	=	2πrh	is	the	lateral	surface	of	the	cylinder,	h	and	r	are	the	height	and	radius	of
the	cylinder
〈Dτ〉	 is	 the	value	of	a	 tangential	component	of	 the	displacement	averaged	over	a
lateral	surface	Dτ

FIGURE	 5.2	 Boundary	 conditions	 for	 the	 electric	 displacement	 vector	 D	 based	 on
Gauss’s	law.

In	the	limit	h	→	0,	Alat	goes	to	zero.	Therefore,	from	Equation	5.1,	it	follows	that	for	a
charged	 boundary	 the	 normal	 component	 of	 the	 dielectric	 displacement	 vector	 has	 a
discontinuity	described	by

D2n−D1n=σs. (5.2)

If	the	boundary	is	not	charged,	the	normal	components	of	the	vector	D	are	continuous:

D2n=D1n. (5.3)

Since	media	“1”	and	“2”	have	different	dielectric	permittivities,	ε1	and	ε2,

Di=εiEi=κiε0Ei

(here	i	=	1,	2),	the	normal	component	of	the	vector	E	has	a	discontinuity	at	the	interface.
From	Equation	5.3,	we	get

ε2E2n=ε1E1n,    E2n−E1n=(ε1ε2−1)E1n=(κ1κ2−1)E1n. (5.4)

It	 is	 important	 to	 stress	 here	 that	 ε1/ε2=κ1ε0/κ2ε0=κ1/κ2,	 so	 the	 relations	 (5.4)	 for	 the
electric	 field	are	written	 in	 the	 literature	 in	 two	equivalent	 forms,	using	either	dielectric
permittivities	εi	or	dimensionless	dielectric	permittivities	κi.	To	avoid	any	confusion,	we
will	 use	 εi	 in	 all	 relations	 (like	 the	 first	 parts	 in	 Equation	 5.4	 with	 the	 ratio	 of
permittivities),	where	εi	can	be	replaced	by	κi.

The	boundary	conditions	for	the	tangential	components	of	the	vectors	D	and	E	 follow



from	the	line	integral	of	the	electric	field	along	a	closed	path	(Figure	5.3).

Consider	near	the	interface	a	closed	rectangular	path	of	length	l	and	height	h.

Since	the	line	integral	for	the	electric	field	vector	is	equal	to	zero,	we	have

∮LE⋅dl=E1τl−E2τl+〈	En	〉h=0, (5.5)

FIGURE	5.3	Derivation	of	boundary	conditions	for	the	electric	field	vector	E.

where	〈En〉	is	the	averaged	value	of	En	on	the	sides	of	the	rectangle.	Going	to	the	limit
h	→	0,	we	get

E2τ=E1τ. (5.6)

For	the	tangential	components	of	the	displacement,	the	boundary	condition	has	the	form

D2τε2=D1τε1,    D2τ−D1τ=(ε2ε1−1)D1τ. (5.7)

Thus,	at	the	interface	that	separates	two	dielectric	media,	the	tangential	component	of	the
vector	E	is	continuous,	while	the	tangential	component	of	D	has	a	discontinuity.

Relations	(5.2)	 through	(5.7)	allow	 to	determine	 the	orientation	change	of	 the	electric
field	and	the	displacement	at	 the	interface.	Let	us	introduce	angles	α1	and	α2	 that	define
the	orientation	of	D1	and	D2	as	shown	in	Figure	5.4	(angles	α1	and	α2	are	measured	from
the	vectors	 to	 the	 interface).	Using	Equations	5.2	 through	5.7,	 it	 is	possible	 to	write	 the
following	relation:

tanα1tanα2=D1nD2τD1τD2n=D2τD1τ=ε2ε1.



FIGURE	5.4	Vectors	D	and	E	at	the	interface	of	two	dielectrics	with	ε1	<	ε2.

A	similar	ratio	can	be	written	for	the	electric	field	vector:

tanα1tanα2=E1nE2τE1τE2n=E1nE2n=ε2ε1.

Figure	5.4	 illustrates	 the	change	of	direction	of	vectors	D	and	E	 at	 the	 interface	of	 two
media.	 The	 figure	 shows	 that	 at	 the	 boundary	 of	 two	 isotropic	 media,	 both	 the
displacement	and	the	electric	field	are	refracted	to	the	same	degree	because	vectors	D	and
E	are	collinear:	D	=	ε0κE.	Entering	 the	dielectric	with	 the	higher	dielectric	permittivity,
both	vectors	D	and	E	move	out	of	the	normal	to	the	interface.

Exercise	5.2
The	magnitude	 of	 the	 electric	 field	 in	 the	 empty	 space	 between	 the	 plates	 of	 a	 charged
parallel-plate	capacitor	is	equal	to	E0.	Find	the	relation	between	the	electric	field	and	the
electric	 displacement	 if	 the	 space	 between	 the	 plates	 is	 partially	 filled	 by	 two	 layers	 of
isotropic	 dielectrics	with	 relative	 dielectric	 permittivities	 κ1	 =	 3	 and	κ2	 =	 2	 (see	 Figure
5.5).

Solution.	 If	 placed	 in	 a	homogeneous	 field,	dielectrics	 are	polarized	 in	 such	a	way	 that
bound	charges	are	formed	at	 their	surfaces.	These	charges	create	 their	own	electric	field
that	 is	directed	 in	 the	opposite	direction	 to	 the	direction	of	 field	E0.	As	a	 result,	 the	net
electric	 field	 inside	 the	dielectrics	decreases	and	becomes	E1	=	E0/κ1	=	E0/3	 in	 the	 first
dielectric	and	E2	=	E0/κ2	=	E0/2	in	the	second.	In	the	space	between	plates,	where	there	is
no	dielectric,	the	electric	field	remains	E0.

The	 electric	 field	 that	 lines	 in	 a	 parallel-plate	 capacitor	 is	 perpendicular	 to	 the
capacitor’s	plates	and	the	dielectric	interfaces.	Thus,	the	normal	component	of	the	electric
field	 at	 the	 interface	 of	 two	 dielectrics	 abruptly	 changes	 its	 value.	 The	 distribution	 of
electric	field	lines	is	shown	for	this	case	in	Figure	5.5a.

The	electric	displacement	D	can	be	written	as

D=ε0κE.

The	 electric	 displacement	 lines	 are	 also	 perpendicular	 to	 the	 dielectric	 interfaces.	 In



contrast	to	the	electric	field,	the	normal	component	of	vector	D	does	not	change	its	value
at	the	interface	of	two	dielectrics,	that	is,	it	is	continuous.	Therefore,	at	any	point	between
capacitor’s	plates	D	=	ε0E0.	Indeed,

D=ε0κ1E1=ε0κ1E1κ1=ε0E0,     D=ε0κ2E2=ε0κ2E0κ2=ε0E0.

FIGURE	5.5	Schematics	of	the	distribution	of	electric	field	E	(a)	and	the	displacement	D
(b)	in	a	capacitor.

The	distribution	of	electric	displacement	lines	is	shown	in	Figure	5.5b.

5.3				BOUNDARY	CONDITIONS	FOR	THE	MAGNETIC
FIELD	OF	AN	ELECTROMAGNETIC	WAVE

We	now	discuss	the	boundary	conditions	for	the	normal	and	tangential	components	of	the
magnetic	field	vector.

For	the	normal	components	of	the	magnetic	field	vector	B	(Figure	5.6),	Gauss’s	law	for
the	magnetic	field	gives

∮AB⋅dA=B2nA−B1nA+〈	Bτ	〉Alat=0. (5.8)

The	 flux	 of	 the	 magnetic	 field	 through	 the	 curved	 surface	 of	 the	 cylinder	 as	 h	 →	 0
becomes	 vanishingly	 small	 and	 can	 be	 neglected.	 Hence,	 at	 the	 interface	 between	 two
homogeneous	 magnetic	 materials,	 the	 normal	 components	 of	 a	 magnetic	 field	 are
continuous,	that	is,

B2n=B1n. (5.9)

As	Bi=μiHi=κmiμ0Hi,	 the	 normal	 component	 of	 the	magnetic	 intensity	 at	 the	 interface
exhibits	a	discontinuity

μ2H2n=μ1H1n,    H2n−H1n=(μ1μ2−1)H1n=(κm1κm2−1)H1n. (5.10)

By	analogy	to	the	dielectric	permittivities	(see	discussion	after	Equation	5.4),	we	have	μ1/
μ2=κm1μ0/κm2μ0=κm1/κm2,	so	relations	(5.10)	for	the	magnetic	field	are	also	written	in
the	 literature	 in	 two	 equivalent	 forms,	 using	 either	 magnetic	 permeabilities	 μi	 or
dimensionless	magnetic	permeabilities	κmi.	To	avoid	any	confusion,	we	will	use	μi	in	all
relations	(like	the	first	parts	in	Equation	5.4	with	the	ratio	of	permeabilities),	where	μi	can



be	replaced	by	κmi.

FIGURE	5.6	Boundary	conditions	for	the	magnetic	field	vector	B.

If	we	have	a	surface	current	along	the	interface	then,	following	Ampere’s	law,	we	have

∮LH⋅dl=H1τl−H2τl+〈	Hn	〉h=Is. (5.11)

Here,	Is	is	the	surface	current	perpendicular	to	the	rectangular	l	⋅	h	shown	in	Figure	5.7.

The	 components	 of	 the	 line	 integral	 of	 the	 field	 on	 the	 shorter	 sides	 of	 the	 chosen
contour	of	integration	in	the	limit	h	→	0	vanish	(Figure	5.7).	Thus,	at	the	interface	of	two
homogeneous	 magnetic	 materials,	 the	 tangential	 component	 of	 the	 magnetic	 intensity
exhibits	discontinuity:

H2τ−H1τ=js, (5.12)

where	js	=	Is/l	is	the	surface	current	density	perpendicular	to	the	rectangular	l	⋅	h	(Figure
5.7).

If	the	surface	current	at	the	interface	is	zero,	the	tangential	components	of	the	magnetic
intensity	are	continuous,	that	is,

H2τ=H1τ. (5.13)

Thus,	 the	 tangential	 components	 of	 the	 magnetic	 field	 exhibit	 a	 discontinuity	 in	 the
presence	of	a	surface	current	(Equation	5.12).	The	following	conditions	at	the	interface	are
satisfied	if	js	=	0:

B1τμ1=B2τμ2,     B2τ−B1τ=(μ2μ1−1)B1τ. (5.14)

By	 analogy	 to	 the	 case	 of	 electric	 field	 (see	 Figure	5.4),	 it	 is	 possible	 to	 determine	 the
change	of	the	orientation	of	the	magnetic	field	at	the	interface	using	Equations	5.9	through
5.14.



FIGURE	5.7	Boundary	conditions	for	the	magnetic	intensity	H	based	on	Ampere’s	law.

Exercise	5.3
Calculate	 the	 magnetic	 intensity	 in	 the	 air	 gap	 of	 a	 ferromagnetic	 core	 with	 relative
magnetic	permeability,	μ	=	μ0κm	inside	a	toroidal	coil.	Assume	that	the	width	of	the	gap	d
is	much	smaller	than	the	average	radius	of	the	coil	R	(Figure	5.8).

Solution.	According	to	Ampere’s	law,

∮LH⋅dl=∑iIi=NI,
where

Ii	is	the	current	in	each	loop	of	the	coil
N	is	the	total	number	of	loops

The	line	integral	of	H	along	the	closed	path	shown	in	Figure	5.8	is	equal	to

∮LH⋅dl=H1(2πR−d)+H2d=NI,
where

Hj	is	the	magnetic	intensity	in	the	core
H2	is	the	magnetic	intensity	in	the	gap

The	magnetic	 field	 lines	 in	 the	 toroidal	 coil	 are	 concentric	 circles,	 that	 is,	 the	magnetic
field	is	perpendicular	to	the	core–gap	interface.	Since	the	normal	component	of	magnetic
intensity	at	the	interface	of	two	media	is	not	continuous,	we	have	from	Equations	5.9	and
5.10

H2=κmH1.

Let	us	substitute	this	expression	into	the	preceding	expression	for	the	total	current

H1(2πR−d)+κmH1d=NI

and	obtain

H1=NI2πR+d(κm−1),      H2=κmNI2πR+d(κm−1).



FIGURE	5.8	Ferromagnetic	core	with	relative	magnetic	permeability	μ=μ0κm	and	air	gap
d	inside	a	toroidal	coil.

5.4				LAWS	OF	REFLECTION	AND	REFRACTION	OF
WAVES

Reflection	 of	 an	 electromagnetic	 wave	 is	 observed	 only	 in	 the	 presence	 of	 an
inhomogeneity,	and	the	simplest	and	the	best	pronounced	example	of	the	inhomogeneity	is
interface	 between	 two	 homogeneous	 media.	 To	 study	 the	 basic	 laws	 of	 reflection,	 we
consider	the	simplest	model	of	a	plane	wave	reflected	from	a	plane	boundary	between	two
media	(Figure	5.9).

At	 the	 interface	 between	 two	 different	media,	 in	 addition	 to	 reflection,	we	 also	 have
refraction	 of	 the	 incident	 electromagnetic	 wave.	 The	 laws	 of	 reflection	 and	 refraction
follow	from	the	boundary	conditions	for	the	electromagnetic	field	vectors.	An	analysis	of
the	processes	of	 reflection	and	 refraction	 for	monochromatic	waves	 is	carried	out	 in	 the
following.

Suppose	that	a	linearly	polarized	plane	wave	with	the	wave	vector	k1	 is	incident	from
medium	 “1”	 at	 an	 angle	 θ0	 with	 respect	 to	 the	 interface	 normal	 at	 the	 plane	 boundary
between	 two	 nonabsorbing	 media	 with	 real	 permittivities	 and	 permeabilities	 ε1,μ1 and 
ε2,μ2.	Here,	k1 = ω1/ν1,	where	ω1	is	the	frequency	and	v1=1/ε1μ1=c/κ1κ1m	is	the	phase
velocity	of	the	wave	in	the	medium	“1”.

In	addition	 to	 the	 incident	wave,	 in	medium	“1,”	 the	reflected	wave	will	propagate	at
the	angle	θ′,	 returning	part	of	 the	 incident	wave	energy	 to	medium	“1.”	We	will	assume
that	the	frequency	of	this	wave	is	ω′	and	that	its	wave	vector	is	k1′	with	magnitude	k1′=ω
′/v1.	Here,	v1	is	the	phase	velocity	of	the	wave	in	medium	“1”.

Thus,	the	net	field	in	medium	“1”	is	a	superposition	of	the	fields	of	the	incident	and	the
reflected	waves.

The	 field	 in	 the	 second	medium	 exists	 only	 in	 the	 form	 of	 a	 refracted	 wave	 that	 is
transmitted	 through	 the	 interface.	The	 refracted	wave	 transfers	part	of	 the	energy	of	 the
incident	wave	into	medium	“2.”	The	refracted	wave	of	frequency	ω2	will	propagate	at	an
angle	 of	 refraction	 θ2	 in	 the	 direction	 of	wave	 vector	k2,	 whose	magnitude	 k2	 =	 ω2/v2,
where	v2	is	the	phase	velocity	of	the	wave	in	medium	“2”.

Using	the	principle	of	superposition,	the	fields	in	medium	“1”	can	be	represented	as



E1=Emiei(ω1t−k1⋅r)+Emrei(ω1′t−k′1⋅r),H1=Hmiei(ω1t−k1⋅r)+Hmrei(ω1′t−k′1⋅r), (5.15)

FIGURE	 5.9	 Orientation	 of	 magnetic	 and	 electric	 fields	 near	 the	 interface	 of	 two
dielectric	media.

and	in	medium	“2”	in	the	form

E2=Emtei(ω2t−k2⋅r),  H2=Hmtei(ω2t−k2⋅r). (5.16)

In	 the	 general	 case,	 the	 complex	 amplitudes	 of	 the	 electric	 and	 magnetic	 field	 vectors
satisfy	the	following	relationships:

Emi=Z1Hmi,    Emr=Z1Hmr,    Emt=Z2Hmt, (5.17)

where	 Zj=μj/εj=μ0κmj/ε0κj	 are	 the	 wave	 resistances	 (impedances)	 of	 the	media.	 These
equations	 together	 with	 the	 boundary	 conditions	 allow	 us	 to	 solve	 the	 problem	 of
determining	the	amplitudes	of	the	reflected	and	transmitted	waves.

The	wave	vectors	of	all	three	waves	have	the	same	direction	as	the	respective	Poynting
vectors	 in	 the	 case	 of	 isotropic	 media	 and	 lie	 in	 the	 same	 plane	 called	 the	 plane	 of
incidence	defined	by	the	interface	and	its	normal.	It	is	necessary	to	distinguish	two	cases
depending	 on	 the	 orientation	 of	 the	 electric	 field	 vector,	 that	 is,	 the	 polarization	 of	 the
incident	wave	with	respect	to	the	plane	of	incidence.	First,	let	us	consider	the	case	where
the	electric	field	vector	E	of	the	incident	wave	lies	in	the	plane	of	incidence;	it	follows	that
the	magnetic	field	vector	H	is	perpendicular	to	this	plane	(Figure	5.9).	Often,	this	type	of
orientation	of	the	wave	vectors	of	the	fields	is	called	parallel	polarization	and	denoted	by
the	index	“p.”	In	optics,	this	polarization	is	called	the	p-polarization;	in	the	following	text
we	will	use	this	terminology.	For	p-polarization,	the	vector	H	for	each	of	the	three	waves
is	perpendicular	 to	 the	plane	of	 incidence	with	component	Hy	 (see	coordinate	 system	 in
Figure	5.9).	The	electric	field	vector	E	has	two	components	(with	respect	to	the	interface)
—tangential	Ex	and	normal	Ez:

E1xi=E1icosθ0,   E1xr=−E1rcosθ′,  E2xt=E2tcosθ2,E1zi=−E1isinθ0,   E1zr=
−E1zrsinθ′,  E2zt=−E2tsinθ2. (5.18)

We	 note	 that	 the	 scalar	 products	 of	 the	 wave	 vectors	 and	 the	 position	 vector	 are



represented	as

k1⋅r=k1xx+k1zz=k1x sinθ0+k1z cosθ0,k′1⋅r=k1′xx+k1′zz=k1′x sinθ′−k1′z cosθ
′,k2⋅r=k2xx+k2zz=k2x sinθ2+k2z cosθ2. (5.19)

As	a	result,	it	is	possible	to	write	the	expressions	for	the	corresponding	projections	of	the
electric	and	magnetic	fields	as	follows:

H1y=H1yi+H1yr=H0ei(ω1t−k1 sinθ0⋅x−k1 cosθ0⋅z)+Hmrei(ω1′t−k1′sinθ′⋅x
−k1′cosθ′⋅z),E1x=E1xi+E1xr=Z1H1yicosθ0−Z1H1yrcosθ′,E1z=E1zi+E1zr=

−Z1H1yisinθ0−Z1H1yrsinθ′,H2y=H2yt=Hmtei(ω2t−k2 sinθ2⋅x−k2 
cosθ2⋅z),E2x=E2xt=Z2H2ytcosθ2,      E2z=E2zt=−Z2H2ytsinθ2,

(5.20)

where	 H0, Hmr, and Hmt	 are	 the	 amplitudes	 of	 the	 magnetic	 field	 of	 the	 incident,
reflected,	and	transmitted	waves.	At	the	interface	(i.e.,	at	z	=	0),	the	boundary	conditions
(5.6)	and	(5.13)	for	the	tangential	components	of	electric	and	magnetic	wave	fields	must
be	satisfied:

H1y=H2y,     E1x=E2x

or

H1yi+H1yr=H2yt,    E1xi+E1xr=E2xt. (5.21)

By	combining	Equation	5.21	with	Equation	5.20	and	 taking	 into	account	 that	 z	=	0,	we
obtain

ei(ω1t−k1 sinθ0⋅x)+rpei(ω1′t−k1′sinθ′⋅x)=tpei(ω2t−k2 sinθ2⋅x),Z1 cosθ0⋅ei(ω1t
−k1 sinθ0⋅x)−Z1rp cosθ′ei(ω1′t−k1′sinθ′⋅x)=Z2tp cosθ2ei(ω2t−k2 

sinθ2⋅x),rp=HmrH0,     tp=HmtH0.
(5.22)

These	relations	are	satisfied	at	any	time	and	at	any	point	of	the	interface	irrespective	of	the
coordinate	x,	so	the	time-dependent	factors	and	coordinate-dependent	factors	in	all	terms
should	be	the	same.	Thus,	we	arrive	at	the	equations

ω1=ω1′=ω2,    k1 sinθ0=k1 sinθ′=k2 sinθ2. (5.23)

From	here	the	important	laws	follow:	(1)	the	frequencies	of	the	reflected	and	transmitted
waves	 are	 equal	 to	 the	 frequency	 of	 the	 incident	 wave,	 (2)	 the	 angle	 of	 reflection	 is
equal	to	the	angle	of	incidence,

θ′=θ0 (5.24)

and	(3)	Snell’s	law	that	relates	the	angle	of	refraction	with	the	angle	of	incidence

sinθ0sinθ2=k2k1=v2v1=ε2ε1=n2n1. (5.25)



Here,	 we	 introduce	 the	 refractive	 indices	 of	 media	 “1”	 and	 “2,”	 n1=κ1 and n2=κ2,
respectively.	 The	 laws	 of	 reflection	 and	 refraction	 are	 valid	 for	 waves	 of	 other
polarizations.

Exercise	5.4
A	p-polarized	wave	is	incident	at	an	angle	θ0	on	the	surface	of	medium	“2”	with	refractive
index	n(y)	=	n0	+	by,	where	b	is	positive	constant,	y	is	the	coordinate	along	the	normal	to
the	 interface,	 and	 n0	 is	 the	 refractive	 index	 in	 medium	 “1.”	 Find	 the	 trajectory	 of	 the
refracted	 light	 beam	 in	 the	 medium	 “2.”	 Note	 that	 medium	 “2”	 exhibits	 optical
inhomogeneity.

Solution.	As	 the	 refractive	 index	depends	on	 coordinate	y,	 the	 light	 beam	will	 undergo
refraction	at	each	point	y	along	its	trajectory.	Thus,	it	is	possible	to	introduce	the	refraction
angle	θ2(y)	for	any	point	A	that	lies	on	the	beam’s	trajectory	(see	Figure	5.10):

dydx=cotθ2(y).

Let	us	split	the	medium	2	on	thin	slices	that	are	parallel	to	the	surface	between	two	media
and	have	thickness	Δy	(in	the	limit	it	is	dy).	Snell’s	law	for	two	consecutive	slices	is

sinθ0sinθ21=n(y1)n0,     sinθ21sinθ22=n(y2)n(y1),    sinθ22sinθ23=n(y3)n(y2),       
sinθ23sinθ24=n(y4)n(y3),….,

where	 the	 first	 index	 in	 θ2j	 indicates	 the	 medium	 and	 the	 second—the	 slices	 number.
Multiplying	the	left-	and	right-hand	parts	of	the	preceding	equations,	we	get	that	at	each
point	y,	the	following	is	true:

sinθ0sinθ2(y)=n(y)n0=n˜(y),    cosθ2=1−sin2θ2=n˜2−sin2θ0n˜.

Here,	n˜=n/n0.	Taking	into	account	these	expressions,	we	can	write

dydx=n˜2−sin2θ0sinθ0     or     dx=sinθ0n˜2(y)−sin2θ0 dy.

By	integrating	the	last	equation,	we	find	the	beam’s	trajectory:

x=∫0ysinθ0(1+b˜y)2−sin2θ0dy=sinθ0b˜ln[	(1+b˜ysinθ0)+(1+b˜ysinθ0)2−1	]0y.

Here,	b˜=b/n0.	After	we	put	values	of	ln	on	the	upper	limit,	y,	and	the	lower	limit,	0,	we
get

x(y)=sinθ0b˜⋅ln(1+b˜y)+(1+b˜y)2−sin2θ01+1−sin2θ0=          =n0 sinθ0b⋅ln(n0+by)+
(n0+by)2−n02sin2θ0n0(1+cosθ0).

FIGURE	5.10	Refraction	in	a	medium	with	variable	refractive	index:	n(y)	=	n0	+	by.

5.5				REFLECTION	AND	TRANSMISSION



COEFFICIENTS	OF	WAVES
In	Equations	5.22,	we	introduced	the	coefficients	of	reflection	and	transmission	for	the	p-
polarized	wave:

rp=HmrH0,     tp=HmtH0, (5.26)

which	generally	are	complex	quantities.	Taking	into	account	Equations	5.23	and	5.24,	the
system	of	Equations	5.22	can	be	written	as

1+rp=tp,       Z1(1−rp)cosθ0=Z2tp cosθ2. (5.27)

Solving	 this	 system,	 we	 obtain	 the	 following	 expressions	 for	 the	 reflection	 and
transmission	coef-ficients,	known	as	Fresnel	equations:

rp=Z1 cosθ0−Z2 cosθ2Z1 cosθ0+Z2 cosθ2=|	rp	|eiψrptp=2Z2 cosθ0Z1 cosθ0+Z2 
cosθ2=|	tp	|eiψtp (5.28)

where

|rp|	and	|tp|	determine	the	real	parts	of	the	reflection	and	transmission	coefficients
Ψrp	and	Ψtp	are	the	phase	shifts	of	the	reflected	and	transmitted	waves	with	respect	to
the	incident	wave,	respectively

If	 media	 “1”	 and	 “2”	 are	 nonabsorbing	 dielectrics,	 that	 is,	 we	 have	 no	 loss	 of
electromagnetic	energy,	the	quantities	rp	and	tp	are	real,	exception	is	for	the	special	case	of
total	internal	reflection	(TIR),	which	will	be	discussed	in	the	following	text.	This	means
that	the	phase	shifts	of	the	reflected	and	transmitted	waves	are	either	zero	or	π	to	get	eiψrp

and	 eiψtp	 either	 +1	 or	 −1.	 Since	 always	 tp	 >	 0,	 then	 ψtp	 =	 0,	 that	 is,	 the	 phase	 of	 a
transmitted	wave	 is	 equal	 to	 the	 phase	 of	 an	 incident	wave.	 The	 phase	 shift	 ψrp	 of	 the
reflected	 wave	 is	 determined	 by	 the	 sign	 of	 the	 numerator	 in	 Equation	 5.28	 for	 the
coefficient	rp.

Let	us	now	consider	the	case	in	which	the	magnetic	field	vector	H	of	the	incident	wave
lies	in	the	plane	of	incidence,	and	thus,	the	electric	field	vector	E	is	perpendicular	to	this
plane.	It	is	accepted	to	call	this	type	of	polarization	of	a	wave	field	perpendicular	and	to
denote	by	the	index	“⊥.”	It	is	known	as	the	s-polarization	following	the	terminology	in
optics.

By	performing	an	analysis	along	the	same	lines	as	in	the	case	of	the	p-polarization,	we
arrive	at	the	following	expressions	for	the	reflection	and	transmission	coefficients:

rs=EmrE0=Z2 cosθ0−Z1 cosθ2Z2 cosθ0+Z1 cosθ2=|	rs	|eiψrs,ts=EmtE0=2Z2 
cosθ0Z2 cosθ0+Z1 cosθ2=|	ts	|eiψts, (5.29)

where	E0	is	the	electric	field	amplitude	of	the	incident	wave.	Equations	5.28	and	5.29	for
the	reflection	and	transmission	coefficients	of	waves	of	 two	orthogonal	polarizations	are



collectively	 called	Fresnel	 equations.	 In	 the	 general	 case,	 a	 plane	 wave	 with	 arbitrary
polarization	 can	 be	 represented	 as	 the	 sum	 of	 waves	 with	 p-	 and	 s-polarizations;	 then
using	 Fresnel	 equations,	 it	 is	 possible	 to	 find	 the	 electric	 and	 magnetic	 fields	 of	 the
reflected	and	transmitted	waves	for	an	arbitrary	polarization	of	the	incident	wave.

Let	us	now	explore	Fresnel	equations	for	some	important	special	cases.	In	the	case	of
normal	incidence,	the	angle	θ0	=	0	and	the	relations	(5.28)	and	(5.29)	take	the	form

rs=Z2−Z1Z2+Z1=ε1μ2−ε2μ1ε1μ2+ε2μ1,    rp=
−rs,ts=2Z2Z2+Z1=2ε1μ2ε1μ2+ε2μ1,    tp=ts. (5.30)

We	now	write	down	these	equations	for	 the	 important	case	of	nonmagnetic	media	when
κm1	=	κm2	=	1

rs=−rp=ε1−ε2ε1+ε2=n1−n2n1+n2,    ts=tp=2ε1ε1+ε2=2n1n1+n2. (5.31)

We	use	Fresnel	equations	for	an	arbitrary	incident	angle	in	the	case	of	nonmagnetic	media
where	nj=κj and Zj=μ0/ε0κj;	Snell’s	law	equation	(5.25)	can	be	rewritten	as

sinθ0sinθ2=ε2ε1=Z1Z2. (5.32)

Taking	 into	account	 this	 relation,	Fresnel’s	equations	5.28	and	(5.29)	 take	 the	 following
form:

rp=−tan(θ2−θ0)tan(θ2+θ0),    tp=2sinθ2 
cosθ0sin(θ2+θ0)cos(θ2−θ0),rs=sin(θ2−θ0)sin(θ2+θ0),    ts=2sinθ2 

cosθ0sin(θ2+θ0).
(5.33)

Equations	5.33	 are	 valid	 under	 the	 assumption	 that	media	 “1”	 and	 “2”	 are	 lossless	 and
their	dielectric	permittivities	ε1	and	ε2	 are	 real	quantities.	Thus,	 the	 refraction	angle,	 θ2,
and	 the	 reflection	and	 transmission	coefficients	 in	Equation	5.33	 are	 also	 real	 quantities
(except	for	the	case	of	TIR).

Under	 certain	 conditions,	 the	 reflection	 coefficient	 of	 a	wave	with	p-polarization	 can
vanish.	The	angle	of	incidence	θ0	=	θB,	at	which	rp	=	0	and	at	which	all	the	energy	of	the
incident	 wave	 is	 transmitted	 into	 medium	 “2,”	 is	 called	 Brewster’s	 angle	 (see	 Figure
5.11).

From	Equation	5.33	for	rp,	it	follows	that	at	the	angle	of	incidence	θ0,	which	is	equal	to
Brewster’s	angle,	the	following	relation	is	valid:

tan(θ2+θ0)=∞     or    θ2+θ0=π/2. (5.34)

Substituting	the	angle	θ2	=	π/2	–	θ0	into	Equation	5.32,	for	a	Brewster	angle	θ0	=	θB,	we
obtain

tanθB=ε2/ε1    or    θB=arctan(n2/n1). (5.35)



FIGURE	5.11	Wave	with	p-polarization	totally	transmitted	into	medium	“2”	for	incidence
angle	θ0	=	θB.

For	a	wave	with	s-polarization,	the	reflection	coefficient	does	not	vanish	for	any	angle	of
incidence.	Therefore,	if	a	wave	of	arbitrary	elliptical	polarization	is	incident	on	the	media
interface	at	Brewster’s	angle,	the	reflected	wave	contains	only	the	component	with	the	s-
polarization,	 that	 is,	 it	 will	 appear	 linearly	 polarized.	 For	 waves	 with	 the	 p-	 and	 s-
polarizations	that	are	incident	from	vacuum	on	the	surface	of	a	polystyrene	with	κ	=	2.56,
the	angular	dependences	of	the	absolute	values	of	the	reflection	coefficients	for	the	case	of
air	and	glass	are	shown	in	Figure	5.12.

Exercise	5.5
A	light	beam	is	incident	at	an	angle	60°	on	a	glass	plate	with	a	thickness	of	d	=	10.0	cm.
Find	the	shift	S	of	the	beam	by	the	plate	if	the	plate	is	immersed	in	water.	The	refractive
indices	of	glass	and	water	are	n2	=	1.50	and	n1	=	1.33,	respectively.

Solution.	We	calculate	the	diagonal	OC	from	two	right-angle	triangles	AOC	and	BOC	(see
Figure	5.13)	and	obtain	the	following	relation	between	d	and	S:

dcosθ2=Ssin(θ0−θ2)=OC.

From	this	expression,	we	can	find	the	shift	of	the	beam	by	the	glass	plate

S=d sin(θ0−θ2)cosθ2=d(sinθ0−cosθ0⋅sinθ2cosθ2).

FIGURE	5.12	Angle	dependence	of	 the	absolute	value	of	 the	 reflection	coefficients	 for
waves	 with	 p-	 and	 s-polarizations	 that	 are	 incident	 from	 vacuum	 on	 the	 surface	 of	 a
polystyrene	with	κ	=	2.56.



FIGURE	5.13	Parallel	displacement	of	a	beam	after	propagation	through	a	glass	plate.

According	to	Snell’s	law	of	refraction,

sinθ0sinθ2=n2n1,   sinθ2=n1 sinθ0n2.

Therefore,

cosθ2=1−sin2θ2=1n2n22−n12sin2θ0.

By	substituting	the	derived	relations	into	the	expression	for	S,	we	get

S=d(sinθ0−n1n2 cosθ0 sinθ0n2n22−n12sin2θ0)=d(sinθ0−n1 sin 
2θ02n22−n12sin2θ0)               S=10(sin60∘−1.33sin120∘21.502−1.332sin260∘)≃2.67cm.

5.6				TOTAL	INTERNAL	REFLECTION
Consider	Snell’s	 law	(see	Equation	5.25)	 in	 the	case	when	medium	“2”	 is	optically	 less
dense	 than	medium	 “1,”	 that	 is,	n2	 <	n1.	 In	 this	 case,	 θ2	 >	 θ0,	 and	 therefore,	 there	 is	 a
critical	value	of	the	angle	of	incidence	θ0	=	θcr,	at	which	the	refraction	angle	reaches	its
limiting	value	θ2	=	π/2,	and	the	transmitted	wave	propagates	along	the	interface	as	shown
in	Figure	5.14:

θcr=arcsin(n2n1)=arcsin(ε2ε1). (5.36)

At	θ0	>	θcr,	the	transmitted	wave	in	the	usual	sense	does	not	exist,	and	all	the	energy	of	the
incident	wave	is	completely	returned	to	the	first	medium.	This	phenomenon	is	called	TIR
and	the	angle	θcr—angle	of	TIR.

FIGURE	5.14	Total	internal	reflection	for	n1	>	n2	and	θ0	=	θcr.

Let	 us	 consider	 the	 electric	 fields	 in	 media	 “1”	 and	 “2”	 at	 TIR.	 We	 introduce	 a
coordinate	system	in	the	same	way	as	in	Figure	5.14.	The	electric	field	in	medium	“1”	is	a
superposition	of	the	incident	and	reflected	waves



E1=E1i+E1r=      =Emiei(ωt−k1 sinθ⋅x−k1 cosθ⋅z)+Emiei(ωt−k1 sinθ⋅x+k1 
cosθ⋅z). (5.37)

In	the	case	of	total	reflection,	the	amplitudes	of	the	incident	and	reflected	waves	are	equal
in	magnitude	and	differ	only	in	the	phase	factor	eiψ.	Thus,	Equation	5.37	takes	the	form

E1=|	Em	|(e−ik1 cosθ0⋅z+ei(k1 cosθ0⋅z+ψ))ei(ωt−k1 sinθ0⋅x)      =|	Em	|(e−i(k1 
cosθ0⋅z+ψ/2)+ei(k1 cosθ0⋅z+ψ/2))ei(ωt−k1 sinθ0⋅x+ψ/2)      =2|	Em	|cos(k1 

cosθ0⋅z+ψ/2)ei(ωt−k1 sinθ0⋅x+ψ/2).
(5.38)

From	 Equation	 5.38,	 it	 follows	 that	 in	 medium	 “1”	 along	 the	 x-direction,	 we	 have	 a
traveling	wave	that	propagates	with	phase	velocity

v1=ωk1 sinθ0=cn1 sinθ0. (5.39)

The	amplitude	of	this	wave	has	periodic	dependence	on	the	coordinate	z.	This	means	that
the	field	 in	 the	direction	of	z-axis	 is	a	 standing	wave	with	a	characteristic	alternation	of
maxima	(antinodes)	and	minima	(nodes)	(refer	Section	4.7	about	standing	waves).	Despite
the	fact	that	the	reflection	is	total,	an	electromagnetic	field	will	also	be	present	in	medium
“2.”	Let	us	write	down	formally	the	expression	for	the	transmitted	wave

E2=Emtei(ωt−k2 sinθ2⋅x−k2 cosθ2⋅z). (5.40)

At	total	reflection,	sinθ2=(n1/n2)sinθ0>1.	This	is	impossible,	if	the	refraction	angle	θ2	 is
considered	as	a	real	number.	However,	if	we	broaden	our	understanding	and	treat	θ2	as	the
complex	(or	imaginary)	number,	then	the	sine	of	a	complex	argument	can	take	any	values.
Cosine	of	the	complex	angle	θ2	will	thus	be	an	imaginary	quantity:

cosθ2=1−sin2θ2=±i(n1n2)2sin2θ0−1=±iα. (5.41)

Substituting	the	expressions	for	cos	θ2	into	Equation	5.40,	we	obtain

E2=Emte∓αk2zei(ωt−k0 sinθ2⋅x). (5.42)

With	increasing	z,	we	expect	a	corresponding	decrease	in	the	amplitude	of	the	transmitted
wave.	Hence,	the	sign	of	the	first	exponent	in	Equation	5.42	is	negative	(α	>	0).	The	field
in	medium	“2”	is	a	wave	traveling	along	the	x-axis	with	a	phase	velocity

v2=ωk2 sinθ2=cn2 sinθ2. (5.43)

The	wave	 amplitude	 of	Equation	5.42	 decreases	 exponentially	 along	 the	 direction	 of	 z-
axis.	This	is	an	example	of	a	wave	for	which	the	directions	of	propagation	of	phase	and
amplitude	fronts	do	not	coincide.	Such	wave	is	called	an	inhomogeneous	wave.

The	depth	d	at	which	the	field	amplitude	of	the	transmitted	wave	decreases	by	a	factor	e
time	 is	1/αk2,	 that	 is,	 it	 is	 of	 the	order	of	magnitude	of	 the	wavelength	 in	medium	“2.”



Thus,	 in	 the	medium	“2,”	 the	 field	 at	TIR	 is	 concentrated	 in	 a	 layer	 rather	 close	 to	 the
interface.

A	 wave	 of	 this	 type,	 which	 propagates	 parallel	 to	 the	 interface,	 is	 referred	 to	 as	 a
surface	 wave.	 This	 wave	 is	 also	 called	 the	 slow	 wave	 since	 its	 phase	 velocity	 (see
Equation	 5.43)	 in	 the	 direction	 of	 the	 x-axis	 is	 less	 than	 the	 phase	 velocity	 of	 a
homogeneous	wave	in	this	medium,	which	is	v2 = ω/k2.

A	 more	 detailed	 analysis	 shows	 that	 at	 TIR,	 the	 moduli	 of	 amplitude	 of	 reflection
coefficients	for	waves	with	s-	and	p-polarizations	are	equal	to	unity,	that	is,

|	rs	|=|	rp	|=1.

However,	the	phase	of	these	coefficients	is	different	and	is	a	function	of	the	angle	θ0:

tanφs2=−(ε1 sin2θ0−ε2)1/2ε1cos	θ0,      tanφp2=[	ε1(ε1 sin2θ0−ε2)	]1/2ε2cos	θ0.

Thus,	if	the	wave,	whose	polarization	plane	is	inclined	to	the	plane	of	incidence	at	some
angle,	experiences	TIR,	the	reflected	wave	becomes	elliptically	polarized.

It	can	be	shown	that	the	average	energy	flux	density	〈Sz〉	of	the	wave	in	the	direction
of	z-axis	in	the	second	medium	is	zero.	However,	there	is	an	oscillating	component	of	the
Poynting	vector	Sz.	Thus,	the	energy	transfer	by	a	surface	wave	is	carried	out	only	in	the
direction	of	the	x-axis,	that	is,	along	the	surface	of	the	medium.

Exercise	5.6
When	a	light	beam	from	medium	“1”	transmits	to	medium	“2,”	the	angle	of	refraction	is
45°.	When	the	light	beam	travels	from	medium	“1”	to	medium	“3,”	the	refraction	angle	is
30°	(the	angle	of	incidence	is	the	same	for	both	cases).	Find	the	angle	of	TIR	for	a	beam
that	is	reflected	from	medium	“3”	to	medium	“2.”

Solution.	The	law	of	refraction	applied	to	the	first	and	second	media	is

sinθ0sinθ12=n2n1,  n2=n1sinθ0sinθ12.

The	law	of	refraction	applied	to	the	first	and	third	media	is

sinθ0sinθ13=n3n1,  n3=n1sinθ0sinθ13.

Snell’s	law	applied	to	the	second	and	third	media	under	the	condition	of	TIR	gives

sinθcrsin(π/2)=n2n3,   sinθcr=n2n3=sinθ13sinθ12.

Since	θ12	=	45°	and	θ13	=	30°,	we	get

sinθcr=12,    θcr=45∘.

5.7				REFLECTION	OF	A	WAVE	FROM	A	DIELECTRIC
PLATE

Consider	 a	 dielectric	 slab	 (medium	 “2”)	 of	 thickness	 d	 with	 refractive	 index	 n2.	 The
refractive	 indices	of	 the	 surrounding	media	“1”	and	“3”	are	n1	 and	n3,	 respectively.	We
assume	that	all	media	are	homogeneous	and	isotropic.	In	this	case,	their	refractive	indices
are	real	constants.



In	 the	 following	 text,	 we	 obtain	 equations	 for	 the	 reflection	 and	 transmission
coefficients	 of	 an	 electromagnetic	wave	 incident	 on	 the	 slab	 from	 the	medium	 “1.”	We
consider	the	case	of	normal	incidence,	for	which	the	coefficients	for	the	p-	and	s-polarized
incident	waves	are	the	same.	The	wave	vectors	and	electric	and	magnetic	field	vectors	in
all	three	areas	are	shown	in	Figure	5.15.

The	 field	 vectors	 in	 medium	 “1”	 are	 written	 as	 superposition	 of	 the	 incident	 and
reflected	waves	propagating	in	opposite	directions:

H1y=H1yi+H1yr=Aei(ωt−k1z)−rAei(ωt+k1z),E1x=E1xi+E1xr=Z1Aei(ωt
−k1z)+rZ1Aei(ωt+k1z). (5.44)

Here,	we	have	 introduced	 the	complex	reflection	coefficient	r.	The	wave	 inside	 the	slab
(for	0	≤	z	≤	d)	 is	formed	as	a	result	of	multibeam	interference:	its	field	is	 the	sum	of	an
infinite	number	of	partial	waves	appearing	at	multiple	reflections	from	the	layer	surfaces.
Formally,	this	field	can	be	written	as	a	superposition	of	two	counterpropagating	waves:

FIGURE	5.15	Orientation	of	magnetic	and	electric	 fields	near	 the	 interface	of	a	slab	of
thickness	d.

H2y=H2y++H2y−=β+Aei(ωt−k2z)−β−Aei(ωt+k2z),E2x=E2x++E2x−=Z2β
+Aei(ωt−k2z)+Z2β−Aei(ωt+k2z), (5.45)

where	 β±	 are	 complex	 coefficients	 that	will	 be	 determined.	 Finally,	 in	 the	 region	 z	 ≥	d
(medium	“3”),	there	is	only	a	transmitted	wave:

H3y=H3yt=tAei(ωt−k3z),E3x=E3xt=Z3tAei(ωt−k3z), (5.46)

where	t	is	the	complex	transmission	coefficient.

To	find	the	coefficients	r	and	t,	the	boundary	conditions,	which	require	continuity	of	the
tangential	components	of	the	magnetic	and	electric	wave	fields,	are	used.	These	conditions
are	written	down	for	each	of	the	interfaces,	that	is,	at	z	=	0	and	z	=	d:

{	H1yi+H1yr=H2y++H2y−E1xi+E1xr=E2x++E2x−     at  z=0,{	H2y++H2y
−=H3ytE2x++E2x−=E3xt                 at  z=d. (5.47)



Substituting	expressions	(5.44)	 through	(5.46)	 for	 the	 field	vectors	 into	Equation	(5.47),
we	obtain	the	following	system	of	equations:

{	1−r=β+−β−,Z1(1+r)=Z2(β++β−),β+e−ik2d−β−eik2d=te−ik3d,Z2(β+e−ik2d+β
−eik2d)=Z3te−ik3d. (5.48)

Eliminating	 the	 coefficients	 β+	 and	 β−	 from	 Equation	 5.48,	 we	 obtain	 the	 following
expressions	for	the	reflection	and	transmission	coefficients:

r=Z2(Z3−Z1)cosk2d+i(Z22−Z1Z3)sink2dZ2(Z3+Z1)cosk2d+i(Z22+Z1Z3)sink2d=|
r	|eiψr,t=2Z2Z3exp(ik3d)Z2(Z3+Z1)cosk2d+i(Z22+Z1Z3)sink2d=|	t	|eiψt. (5.49)

From	 these	 relations,	 it	 follows	 that	 the	 reflection	 and	 transmission	 coefficients	 for	 a
dielectric	nonabsorbing	slab	are	periodic	functions	of	the	thickness	d.	Without	going	into	a
detailed	analysis	of	this	dependence,	we	note	some	important	special	cases.

Case	1.	Consider	the	case	when	n1	<	n2	and	n3	<	n2.	In	this	case,	there	is	an	additional
phase	shift	π	at	the	z	=	0	interface.	No	such	phase	shift	exists	at	the	z	=	d	interface.

First,	 we	 determine	 the	 condition	 when	 complete	 transmission	 of	 the	 incident	 wave
energy	through	the	layer	takes	place,	that	is,	when	the	reflection	coefficient	is	zero.	If	k2d
=	Nπ,	that	is,	the	thickness	of	layer	takes	the	values

d=N×λ22=N×λ2n2, (5.50)

where

N	=	1,	2,	3,	…
λ2	and	λ	are	the	wavelengths	in	the	slab	and	in	vacuum,	respectively

In	this	case,	cos	k2d	=	±1,	sin	k2d	=	0,	and	the	reflection	coefficient	is

r=Z3−Z1Z3+Z1. (5.51)

Equation	5.51	coincides	with	 the	expression	 for	 reflection	coefficient	 (5.30)	 for	a	single
boundary	 between	media	 with	 impedances	Z1	 and	Z3,	 that	 is,	 the	 wave	 behaves	 in	 the
same	way	as	if	slab	does	not	exist	between	medium	“1”	and	medium	“3.”	If	medium	“1”
and	medium	“3”	on	either	side	of	the	slab	are	identical,	that	is,	Z1	=	Z3,	we	get	r	=	0.

The	maxima	in	the	reflected	intensity	occur	when

d=(N−12)λ2n2,dmin=λ4n2     for N=1. (5.52)

Case	2.	Consider	now	the	case	when	n1	<	n2	and	n3	>	n2.	Under	these	conditions,	there	are
additional	 phase	 shifts	 π	 at	 z	 =	 0	 and	 z	 =	 d	 interfaces,	 and	 intensity	 minima	 in	 the
reflection	occur	when

d=(N−12)λ2n2. (5.53)



Intensity	maxima	in	the	reflection	occur	when

d=Nλ2n2. (5.54)

For	N	 =	 1,	 2,	 3,	…	 in	Equation	5.53	 the	 layer	 thickness	 is	 equal	 to	 an	 odd	 number	 of
quarter	of	the	wavelength	in	medium,	d	=	(2N	−	1)	λ2/4,	so	cos	k2d	=	0	and	sin	k2d	=	±1.
As	a	result,	for	the	reflection	coefficient,	we	get

r=Z22−Z1Z3Z22+Z1Z3. (5.55)

From	this	expression,	it	follows	that	the	reflection	coefficient	vanishes	under	the	condition

Z2=Z1Z3. (5.56)

For	nonmagnetic	media	(κmj	=	1)	Z	=	Z0/n,	where	n	is	the	refractive	index	of	medium,	the
condition	 (5.56)	 is	 written	 as	 n2=n1n3.	 The	 Equations	 5.53	 and	 5.56	 are	 used	 for	 the
deposition	of	antireflection	coatings	on	reflective	surfaces	for	the	purpose	of	reducing	the
reflected	light	from	the	surface.	The	thickness	of	the	antireflection	coating	should	be	equal
to	a	quarter	of	 the	wavelength	in	the	medium,	and	its	material	parameters	should	satisfy
condition	(5.56).

Exercise	5.7
A	glass	plate	of	thickness	1.20	μm	and	of	refractive	index	n	=	1.50	is	placed	between	two
media	 with	 refractive	 indices	 n1	 and	 n2.	 Light	 of	 wavelength	 λ	 =	 0.6	 μm	 is	 normally
incident	on	the	plate	(Figure	5.16).	Find	the	results	of	interference	of	light	beams	1	and	2
reflected	from	the	upper	and	lower	surfaces	of	plate	in	the	following	cases:	(1)	n1	<	n	<	n2,
(2)	n1	>	n	>	n2,	(3)	n1	<	n	>	n2,	and	(4)	n1	>	n	<	n2.

Solution.	The	result	of	interference	depends	on	how	many	half-waves,	λ/2,	are	contained
within	the	difference	of	two	optical	path	lengths,	Lopt.	If

Loptλ/2=2m

(even	number),	then	we	have	interference	maxima.	If

Loptλ/2=2m+1

(odd	number),	we	get	interference	minima.

When	finding	the	optical	path	length,	it	is	necessary	to	take	into	account	that	during	the
reflection	 from	 an	 optically	 denser	 medium,	 an	 additional	 phase	 shift	 π	 appears.	 This
phase	shift	corresponds	to	an	additional	difference	λ/2	in	Lopt.

Thus,	at	normal	incidence	of	light	on	the	plate,	the	optical	path	length	of	two	beams	1
and	2	will	be	Lopt	=	2dn	+	(λ/2),	if	one	of	the	beams	is	reflected	from	the	optically	denser
medium,	or	Lopt	=	2dn,	if	both	beams	are	reflected	from	optically	denser	medium	or	both
beams	are	reflected	from	optically	less	dense	medium.	Taking	all	this	into	account,	for	the



four	cases	given	earlier	we	get,	respectively,

Lopt=2dn,     Lopt=2dn,     Lopt=2dn+(λ2),     Lopt=2dn+(λ2).

In	 the	 first	 two	 cases,	we	get	Lopt	 =	 2	×	 1.20	×	 1.50	=	 3.60	μm.	Since	 λ/2	=	 0.30	μm,
Lopt/(λ/2)	=	12,	 that	 is,	 it	 is	even	number,	and	 therefore,	 the	constructive	 interference	of
light	takes	place.	In	the	third	and	fourth	cases,	we	get	Lopt	=	2	×	1.20	×	1.50	+	0.30	=	3.90
μm	and	Lopt/(λ/2)	=	13,	that	is,	it	is	odd	number,	and	therefore,	destructive	interference	is
observed.

FIGURE	5.16	Interference	of	two	beams	reflected	from	a	glass	plate.

PROBLEMS
5.1	 A	 point	 charge	 Q	 is	 surrounded	 by	 an	 uncharged	 dielectric	 concentric
spherical	 shell	with	 electrical	 permittivity	 ε	 and	 internal	 and	 external	 radii	R1
and	R2,	respectively.	Find	the	induced	bound	charge	on	the	surfaces	of	dielectric
layer,	sheet	density	of	bound	charge,	and	electric	field	and	electric	displacement
in	the	entire	space.
(Part	of	the	answer:	The	induced	charge,	q′=−(1−1κ)Q=−κ−1κQ.
The	sheet	density,	σ′(R1)=−(κ−1)Q4πκR12.
Electric	displacement	D	(everywhere)	is	equal	to	D(r)=Q4πr2.)
5.2	A	point	charge	q	is	placed	at	the	center	of	a	dielectric	sphere	of	radius	a	with
permittivity	κ1.	The	sphere	is	surrounded	by	an	infinite	dielectric	of	permittivity
κ2.	 Find	 the	 surface	 density	 of	 bound	 charges	 at	 the	 interface	 of	 the	 two
dielectrics.
5.3	 A	metal	 sphere	 of	 radius	R	 is	 charged	with	 charge	Q.	 The	 surface	 of	 the
sphere	 is	 covered	by	 an	uncharged	dielectric	 shell	 of	 thickness	h.	What	 is	 the
surface	density	of	bound	charges	on	the	outer	and	inner	surfaces	of	the	dielectric
shell	if	the	dielectric	permittivity	of	the	shell	is	κ?
5.4	The	space	between	the	plates	of	a	parallel-plate	capacitor	is	filled	with	two
dielectric	layers	with	widths	d1	and	d2	and	electrical	permittivities	ε1	and	ε2.	A
constant	potential	difference	Δφ	is	applied	between	the	capacitor	plates.	Find	the
electric	 field,	 the	 electric	 displacement	 in	 each	 layer,	 the	 potential	 difference
across	 each	 layer,	 and	 the	 density	 of	 bound	 charges	 at	 the	 surfaces	 of	 the
dielectric	layers.	(Answer:	Electric	field	in	each	layer	is

E1=ε2Δφε2d1+ε1d2,    E2=ε1Δφε2d1+ε1d2.

Electric	displacement,	D1=ε0κ1ε2Δφε2d1+ε1d2,    D2=ε0κ2ε2Δφε2d1+ε1d2.



Potential	 difference	 across	 each	 layer,	 Δφ1=ε2d1Δφε2d1+ε1d2,   
Δφ2=ε1d2Δφε2d1+ε1d2.
Density	 of	 bound	 charges,	 σ′1=ε0κ2(κ1−1)Δφκ2d1+κ1d2,    σ
′2=ε0κ1(κ2−1)Δφκ2d1+κ1d2,    σ′12=σ′1−σ′2=ε0(κ1−κ2)Δφκ2d1+κ1d2.)
5.5	Write	 expressions	 for	 reflection	and	 transmission	amplitude	coefficients	 at
the	boundary	between	 two	nonmagnetic	media	(κm1	=	κm2	=	1)	with	dielectric
constants	 ε1	 and	 ε2	 for	 waves	 with	 s-	 and	 p-polarizations.	 Determine	 the
conditions	under	which	the	reflection	coefficients	become	zero.	(Answer:

rs=cosθ0−n212−sin2θ0cosθ0+n212−sin2θ0,     
rp=n212−sin2θ0−n212cosθ0n212−sin2θ0+n212cosθ0,ts=2cosθ0cosθ0+n212−sin2θ0,     

tp=n212−sin2θ0n212−sin2θ0+n212cosθ0.

The	reflection	coefficient,	rs,	for	the	perpendicular	polarization	vanishes	only	if
n2	 =	 n1.	 The	 reflection	 coefficient	 of	 the	 wave	 with	 parallel	 polarization	 rp
vanishes	 not	 only	 when	 n2	 =	 n1	 but	 also	 at	 Brewster’s	 angle	 (θB),	 θB	 =
arctan(n2/n1)	=	arctan	ε2/ε1.)
5.6	A	coil	with	N	=	800	turns	is	wound	around	an	iron	core	that	has	the	form	of
a	 torus	with	 an	 average	diameter	of	d	 =	 0.10	m.	The	 core	 has	 a	 gap	with	 the
following	width:	b	=	2.50	×	10−3	m.	When	the	current	in	the	winding	I	=	5.00	A,
the	magnetic	field	in	the	gap	is	B0	=	0.9	T.	Find	the	magnetic	permeability	of	the
iron	core.	(Answer:	κm	=	101.)
5.7	 Find	 the	 magnetic	 moment	 of	 a	 diamagnetic	 helium	 atom	 induced	 by	 an
external	 magnetic	 field	 B.	 Hint:	 The	 diamagnetism	 of	 helium	 is	 due	 to
compensation	 of	 moments	 of	 oppositely	 directed	 spins	 of	 two	 electrons	 in
helium.	 To	 explain	 the	 origin	 of	 diamagnetism	 in	 helium	 atom,	 that	 is,	 the
absence	 of	 the	 total	momentum	 in	 the	 absence	 of	 an	 external	magnetic	 field,
classical	description	assumes	that	the	orbital	radii	of	the	two	electrons	are	a	and
electrons	on	the	orbit	have	the	same	velocities	but	opposite	directions.	(Answer:
The	 magnetic	 moment	 induced	 in	 helium	 atom	 is	 μm=(ea/2)(v2−v1), where 
v1,2=(ωLa)2+e2/(2πε0ma)∓ωLa and ωL=eB/2m.)
5.8	A	dielectric	layer	with	refractive	index	n2	is	in	contact	with	dielectric	media
“1”	and	“3”	with	refractive	indices	n1	and	n3,	 respectively,	as	shown	in	Figure
5.16.	Using	expression	(5.49),	obtain	an	expression	for	the	energy	reflection	and
transmission	 coefficients	 in	 the	 case	 of	 normal	 incidence	 of	 the	 wave	 on	 the
layer.

(Answer:  R=|r|2=(n1−n3)2 cos2k2d+(n2−n1n3/n2)2 sin2k2d(n1+n3)2 cos2k2d+
(n2+n1n3/n2)2 sin2k2d,T=1−R=4n1n3(n1+n3)2 cos2k2d+(n2+n1n3/n2)2 sin2k2d.)

5.9	An	electromagnetic	wave	of	frequency	f	=	1.00	×	108	Hz	and	electric	field
amplitude	 E0	 =	 2.0	 V/m	 propagate	 along	 the	 y-axis	 in	 a	 dielectric	 with
parameters	κ	=	5.00,	κm	=	1.00,	and	σ	=	0.	Write	the	equation	that	describes	the
electric	 field	 of	 the	 wave	 in	 the	medium	 and	 determine	 the	 amplitude	 of	 the
magnetic	intensity	as	well	as	the	wavelength,	phase	velocity,	and	wave	number	k



of	 the	 wave.	 (Answer:	 E(t,y)=E0 cos[	 2π(ft−(y/λ))	 ],  H0=337 A/m,  λ=1.34m,  
vph=1.34×108m/s,  and k=4.68 m−1.	)
5.10	Radar	detection	of	a	target	is	produced	by	pulses	whose	frequency	f0	=	200
MHz.	Each	next	pulse	is	emitted	immediately	after	receiving	the	previous	pulse.
The	distance	 to	 the	 target	L	 is	50.0	km.	Find	 the	wavelength	corresponding	 to
the	frequency	and	the	maximum	number	of	pulses	N	emitted	by	the	radar	over	a
time	interval	Δt	=	1	s.	(Answer:	λ0	=	1.50	m,	N	=	3.00	×	103	pulses.)
5.11	 The	 operating	 wavelength	 λ	 of	 a	 radar	 is	 0.30	 m.	 The	 radar	 emits	 250
pulses	 per	 second,	 and	 each	 pulse	 has	 a	 duration	 of	 τ	 =	 5.00	 μs.	 How	many
oscillations	are	contained	in	each	pulse	and	what	is	the	maximum	range	of	the
radar?	(Answer:	n	=	5.00	×	103	oscillations,	maximum	range	600	km.)
5.12	 A	 linearly	 polarized	 wave	 with	 frequency	 f	 =	 109	 Hz	 propagates	 in	 a
dielectric	 with	 parameters	 κ1	 =	 7.00,	 κm1	 =	 1.00,	 and	 σ1	 =	 0	 in	 a	 direction
perpendicular	to	a	flat	infinite	surface	of	a	second	dielectric	with	the	parameters
κ2	 =	 2.00,	 κm2	 =	 1.00,	 and	 σ2	 =	 0.	 The	 amplitude	 of	 the	 electric	 field	 of	 the
incident	wave	 is	320	mV/m.	Find	 the	distribution	of	 the	electric	and	magnetic
intensity	 in	 each	 of	 the	 media	 and	 plot	 their	 dependence	 on	 the	 coordinates.
(Answer:
E1=A1exp(−ik1z)+A2exp(ik1z),     H1=
−A1Z1exp(−ik1z)+A2Z1exp(ik1z),E2=A3exp(−ik2z),     H2=−A3Z2exp(−ik1z),
where	A1	+	A2	=	A3	and	A2	≃	97	mV/m,	A3	≃	415	mV/m.)
5.13	Find	the	ratio	of	the	displacement	current	density	to	the	conduction	current
density	 in	seawater	 (κ	=	80.0,	κm	=	1.00,	and	σ	=	4.00	Sm/m)	 for	waves	with
frequencies	f	=	104,	106,	and	108	Hz.	(Answer:	δdisp/δcond = 1.11 × 10−5 for f = 
104 Hz, δdisp/δcond = 1.11 × 10−3 for f = 106 Hz, and δdisp/δcond = 0.11 for f = 
108 Hz.)
5.14	 A	 monochromatic	 light	 beam	 of	 wavelength	 λ	 =	 698	 nm	 is	 incident
normally	on	a	glass	wedge	with	 refractive	 index	n	=	1.50	 (with	 respect	 to	 the
base	of	 the	wedge).	Determine	 the	angle	of	 the	wedge	 if	 the	distance	between
two	adjacent	interference	minima	in	the	reflected	light	is	2.0	mm.	Assume	that
the	angle	is	small.	(Answer:	α	=	24″.)
5.15	A	beam	of	white	 light	 is	 incident	normally	on	a	soap	film	with	refractive
index	n	=	1.33.	What	is	the	minimum	film	thickness	so	that	the	light	reflected	by
the	film	will	appear	green?	(Wavelength	of	green	light	λ	=	550	nm.	Answer:	dmin
≃	1.00	×	10−7	m.)
5.16	A	narrow	light	beam	is	incident	from	air	on	the	horizontal	surface	of	water
at	an	angle	α	with	 respect	 to	 the	normal.	A	mirror	 is	placed	 in	 the	water	at	an
angle	γ	with	respect	to	the	horizontal.	What	is	the	minimum	value	of	the	angle	γ
in	order	for	the	beam	not	to	be	able	to	escape	from	the	water	 into	the	air	after
reflection	 from	 the	 mirror?	 The	 refractive	 index	 of	 water	 is	 n.	 (Answer : 
γ=12arcsin[	1n2(n2−sin2α−sin αn2−1)	].)



6Electromagnetic	Waves	in	Anisotropic	and
Optically	Active	Media

The	macroscopic	properties	of	an	isotropic	medium	do	not	depend	on	the	direction	along
which	they	are	measured.	The	direction	of	wave	propagation	of	an	electromagnetic	wave
in	an	isotropic	medium	is	along	a	single	direction.	An	anisotropic	medium	is	one	in	which
physical	 properties	 vary	 along	 different	 directions.	 In	 an	 anisotropic	medium,	 there	 are
specific	 directions	 that	 are	 associated	with	 the	 structure	 of	medium	or	with	 an	 external
electric	 and/or	 magnetic	 field.	 Anisotropy	 is	 connected	 with	 the	 presence	 in	 space	 of
specific	directions	(which	are	known	as	axes	of	symmetry)	that	are	due	to	the	arrangement
of	atoms	or	molecules	(in	natural	crystals)	or	 to	structural	elements	(in	artificial	media).
For	 anisotropic	 media,	 the	 fundamental	 equations	 of	 electrodynamics—Maxwell’s
equations—retain	their	form.	However,	since	in	such	media	the	dielectric	permittivity	and
magnetic	permeability	are	not	scalar	but	tensor	quantities,	the	material	equations	become
significantly	more	complicated.	In	this	case,	the	relation	between	the	vectors	D	and	E	and
between	B	and	H	is	given	by	second-rank	tensors.	A	scalar	when	multiplied	by	a	vector	is
transformed	to	another	vector,	parallel	or	antiparallel	to	the	first	vector.	Multiplication	of	a
second-rank	tensor	and	a	vector	A	transforms	that	vector	into	another	vector	A′,	which	is
not	parallel	to	vector	A.	Thus,	in	an	anisotropic	medium,	the	vectors	of	the	displacement
and	the	electric	field,	D	and	E,	and	also	the	vectors	B	and	H	are	not	collinear	any	more.
For	 conductive	 anisotropic	 media,	 electric	 conductivity	 σ	 in	 Ohm’s	 law	 can	 also	 be	 a
tensor	 quantity,	 which	means	 that	 vectors	E	 and	 j	 are	 not	 collinear.	 Anisotropy	 of	 the
medium	 leads	 to	 the	 fact	 that	 the	 magnitude	 of	 a	 wave	 vector,	 the	 group	 and	 phase
velocity	of	the	wave,	and	its	polarization	parameters	depend	not	only	on	the	frequency	but
also	on	the	direction	of	the	wave	propagation	with	respect	to	the	axis	of	symmetry.

6.1				STRUCTURE	OF	A	PLANE	WAVE	IN	AN
ANISOTROPIC	MEDIUM

1.	 The	 description	 of	 electrodynamic	 properties	 of	 an	 anisotropic	 medium	 generally
requires	knowledge	of	3	×	3	matrices,	which	form	the	tensors	of	the	dielectric	permittivity
and	magnetic	 permeability,	 κ^ and κ^m,	 respectively.	 The	 relations	 3.37	 for	 anisotropic
media	take	the	forms:

D=ε0κ^E,     B=μ0κ^mH. (6.1)

These	equations	in	the	Cartesian	coordinate	system	can	be	written	as:

Di=ε0∑jκijEj,      Bi=μ0∑jκmijHj, (6.2)

where	 indices	 i,	 j	 =	 x,	 y,	 z.	 The	 quantities	 κij	 and	 κmij	 form	 3	 ×	 3	matrices	 so	 that	 the
tensors	take	the	forms



κ^=(κxxκxyκxzκyxκyyκyzκzxκzyκzz),    κ^m=
(κmxxκmxyκmxzκmyxκmyyκmyzκmzxκmzyκmzz). (6.3)

The	 components	 of	 tensors	 κ^ and κ^m	 are	 complex	 quantities,	 some	 of	 which,	 under
certain	 conditions,	 can	 be	 zero.	 For	 the	 special	 case	 of	 an	 isotropic	 medium,	 all	 off-
diagonal	 components	 of	 both	 tensors	 are	 equal	 to	 zero,	 and	 the	 diagonal	 elements	 have
identical	values,	that	is,	κxx	=	κyy,	=	κzz	=	κ,	κmxx	=	κmyy	=	κmzz	=	κm.	The	media	that	exhibit
anisotropy	 in	 both	 the	 dielectric	 permittivity	 and	 magnetic	 permeability	 are	 rare.
Therefore,	 we	 will	 consider	 separately	 the	 two	 types	 of	 anisotropy	 of	 electromagnetic
properties	in	a	medium.

2.	Media	with	 anisotropic	 dielectric	 permittivity	 tensor.	 In	 this	 case,	 the	 constitutive
relations	(6.1)	become	simpler	and	have	the	forms

D=ε0κ^E,     B=μ0κmH, (6.4)

where	κm	 is	 a	 scalar	 quantity.	The	 components	 of	 the	 tensor	 κ^	 in	 general	 are	 complex
numbers.	It	can	be	shown	that	tensor	κ	must	be	symmetric	for	transparent	(nonabsorbing)
media.	This	means	that	its	off-diagonal	components,	which	are	symmetrically	positioned
about	the	diagonal,	are	identical,	that	is,	κij	=	κji.	Thus,	in	a	transparent	medium,	the	tensor
κ^	generally	has	only	six	independent	components.

If	we	change	the	coordinate	axes,	the	dielectric	tensor	components	take	different	values.
From	one	system	to	another,	they	transform	as	tensor	components.	According	to	Equation
6.4,	the	directions	of	vectors	D	and	E,	generally,	do	not	coincide.	Indeed,	the	relationship
between	the	Cartesian	components	of	these	vectors	can	be	represented	as

Dx=ε0(κxxEx+κxyEy+κxzEz),Dy=ε0(κyxEx+κyyEy+κyzEz),Dz=ε0(κzxEx+κzyEy+κzzEz).

It	is	seen	that	if	there	is	only	one	nonzero	component	of	the	electric	field	(e.g.,	Ex	≠	0),	the
displacement	vector	has	generally	all	three	components

Dx=ε0κxxEx,   Dy=ε0κyxEx,   and    Dz=ε0κzxEx.

Any	symmetric	tensor	with	the	appropriate	choice	of	coordinate	system	can	be	reduced	to
its	diagonal	form,	with	all	off-diagonal	components	equal	to	zero.	This	means	that	there	is
always	 a	 unique	 coordinate	 system	 in	 which	 the	 dielectric	 tensor	 of	 an	 anisotropic
transparent	medium	has	the	diagonal	form

κ^=(κx000κy000κz). (6.6)

In	 this	coordinate	system,	 tensor	κ^	 is	described	by	 three	principal	values	 for	which	 the
notation	κx	=	κxx,	κy	=	κyy,	and	κz	=	κzz	can	be	used.	It	is	accepted	to	choose	the	principal
axes	 x,	 y,	 and	 z	 so	 that	 the	 conditions	 κx	 <	 κy	 <	 κz	 are	 satisfied.	 In	 the	 principal	 axes
coordinate	 system,	 constitutive	 relations	 (6.2)	 and	many	 other	 equations	 for	 anisotropic
media	take	the	simplest	form.

Consider	 a	plane	monochromatic	wave	 in	 a	homogeneous	 anisotropic	medium	 that	 is



free	 from	charges	and	currents	 (i.e.,	ρ	=	0,	 j	=	0).	Then,	 the	 time-	and	 space-dependent
field	vectors	can	be	represented	as

D(t,r)=Dei(ωt−k⋅r),   E(t,r)=Eei(ωt−k⋅r),B(t,r)=Bei(ωt−k⋅r),   H(t,r)=Hei(ωt−k⋅r).  (6.7)

where	D,	E,	B,	and	H	are	the	constant	amplitudes.	After	substituting	these	expressions	in
Maxwell’s	equations	3.45,	we	obtain	the	following	system	of	equations:

k⋅D=0,         k×H=−ωD,k×E=ωB,k⋅B=0. (6.8)

Taking	into	account	the	constitutive	relations	(6.4),	this	can	be	written	as

k⋅D=0,         k×H=−ωD,k×E=ωμ0κmH,              k⋅B=k⋅H=0. (6.9)

From	the	first	and	last	equations	of	system	(6.9),	it	follows	that	D	⊥	k	and	H	⊥	k,	that	is,
the	wave	is	transverse	for	the	electric	displacement	vector,	D,	and	the	magnetic	intensity
vector,	H,	 and	 also	 the	 magnetic	 field	 vector,	B,	 which	 is	 collinear	 with	H.	 From	 the
remaining	 two	 equations	(6.9),	 it	 follows	 that	D	⊥	 k,	H	 and	E	⊥	H.	 This	means	 that
vectors	E,	D,	 and	k	 lie	 in	one	plane,	 perpendicular	 to	 a	vector	H,	 but	E	 and	D	 are	 not
collinear	 due	 to	 the	 anisotropy	 of	 the	 dielectric	 permittivity.	 The	wave	 surface	 plane	 is
perpendicular	to	vector	k	and	coincides	with	the	plane	in	which	vectors	D	and	H	lie.	Since
vector	E	does	not	lie	in	this	plane,	the	Poynting	vector,	S	=	E	×	H,	is	not	collinear	with	k.
Thus,	in	an	anisotropic	medium,	the	direction	of	the	energy	density	flux	does	not	coincide
with	the	direction	of	the	wave	vector.	The	Poynting	vector	together	with	vectors	E,	D,	and
k	lies	in	the	plane,	perpendicular	to	vectors	H	and	B.

3.	Media	with	 anisotropic	magnetic	 permeability	 tensors.	 In	 this	 case,	 the	 constitutive
relations	obtain	the	forms

D=ε0κE,     B=μ0κ^mH, (6.10)

and	Maxwell’s	equations	 for	 the	constant	amplitudes	of	waves	determined	by	Equations
6.7	will	be	written	as	follows	(compare	with	Equations	6.9):

k⋅E=0,                k×H=−ωε0κE,k×E=ωB,k⋅B=0. (6.11)

From	these	equations,	it	follows	that	E	⊥	k,	B	⊥	k,	E	⊥	B,	and	the	vectors	E	and	D	are
parallel.	Thus,	vectors	E,	D,	and	B	lie	in	the	plane	of	the	wave	surface	perpendicular	to	the
wave	vector	k.	Vector	H	is	not	collinear	with	B	and	does	not	lie	in	this	plane.	For	the	same
reason,	Poynting	vector	S	is	not	collinear	with	the	wave	vector	k.	Vectors	B,	H,	k,	and	S
lie	in	one	plane,	perpendicular	to	the	vectors	E	and	D.

In	Figure	6.1,	 the	 relative	 positions	 of	 a	wave	 vector,	 Poynting	 vector,	 and	 the	wave
field	 vectors	 are	 presented	 for	 waves	 propagating	 in	 a	 medium	 with	 tensor	 dielectric
permittivity	(a)	and	tensor	magnetic	permeability	(b).

Exercise	6.1



Derive	the	equation	that	gives	the	angle	between	the	vectors	of	 the	electric	field,	E,	and
the	 electric	 displacement,	 D,	 of	 an	 electromagnetic	 wave	 in	 a	 medium	 if	 the	 electric
displacement	vector	has	components	Dx,	Dy,	and	Dz	and	the	dielectric	permittivity	tensor
of	the	medium	is	diagonal	with	components	κxx	=	κx,	κyy	=	κy,	and	κzz	=	κz.

FIGURE	6.1	Relative	orientation	of	six	vectors	that	describe	the	electromagnetic	field	in
media	with	 anisotropic	 dielectric	 permittivity	 (a)	 and	 anisotropic	magnetic	 permeability
tensors	(b).

Solution.	 The	 cosine	 of	 an	 angle	 between	 the	 two	 vectors	 is	 given	 by	 the	 following
relationship:

cosα	=	ExDx+EyDy+EzDz|	E	||	D	|.

Since	 the	relation	between	the	components	of	vectors	E	and	D	has	 the	form	Di = ε0κiEi
(where	i	=	x,	y,	z),	then

cosα	=	Dx2/κx+Dy2/κy+Dz2/κzε0Ex2+Ey2+Ez2Dx2+Dy2+Dz2	          =	Dx2/κx+Dy2/
κy+Dz2/κzε0(Dx2/κx2+Dy2/κy2+Dz2/κz2)/ε02Dx2+Dy2+Dz2	          =	Dx2/κx+Dy2/

κy+Dz2/κz(Dx2/κx2+Dy2/κy2+Dz2/κz2)Dx2+Dy2+Dz2.

For	positive	values	of	κi,	we	have	cos	α	>	0,	and	therefore,	0	<	α	<	π/2.	The	same	angle	is
formed	between	the	Poynting	vector	S	and	the	wave	vector	k	and	also	between	the	vectors
of	the	group	and	phase	velocities.	We	note	that	the	four	vectors	E,	D,	S,	and	k	 lie	in	the
same	plane.

6.2				DISPERSION	RELATION	AND	NORMAL	WAVES
In	this	section,	we	consider	the	case	of	a	medium	with	anisotropic	dielectric	permittivity.
We	will	obtain	the	wave	equation	for	E	from	system	(6.9)	by	expressing	vector	H	from	the
third	equation	(H	=	k	×	E/ωμ0κm)	and	substituting	it	in	the	second	equation

k×(k×E)+k02κmκ^E=0. (6.12)

where	k0	=	ω/c	is	the	wave	number	in	vacuum.	Using	the	vector	identity	in	Equation	6.12
k×(k×E)=k(k⋅E)−k2E,	we	obtain	the	equation

k(k⋅E)−k2E+k02κmκ^E=0. (6.13)



The	projections	on	 the	 three	coordinate	axes	of	vector	 (Equation	6.13)	give	a	 system	of
three	linear	homogeneous	equations	that	involve	the	components	Ei	(i	=	x,	y,	z).	Choosing
the	principal	axes	of	the	tensor	κ^	as	the	coordinate	axes	and	introducing	the	components
ki	of	the	wave	vector	on	these	axes,	Equation	6.13	can	be	written	as

ki(kxEx+kyEy+kzEz)−(k2−k02κmκi)Ei=0,    where  i=x,y,z.

The	three	equations	for	i	=	x,	y,	z	are	the	following:

kx(kxEx+kyEy+kzEz)−(k2−k02κmκx)Ex=0, ky(kxEx+kyEy+kzEz)−
(k2−k02κmκy)Ey=0, kz(kxEx+kyEy+kzEz)−(k2−k02κmκz)Ez=0.

It	is	convenient	to	present	the	preceding	system	of	equation	in	the	following	form:

(k02κmκx−k2+kx2)Ex+kxkyEy+kxkzEz=0,kykxEx+(k02κmκy
−k2+ky2)Ey+kykzEz=0,kzkxEx+kzkyEy+(k02κmκx−k2+kz2)Ez=0. (6.14)

The	 system	 of	 three	 homogeneous	 equations	 (6.14)	 has	 a	 nontrivial	 solution	 if	 its
determinant	is	equal	to	zero:

det(k02κmκx−ky2−kz2kxkykxkzkykxk02κmκy−kx2−kz2kykzkzkxkzkyk02κmκz
−kx2−ky2)=0. (6.15)

The	 resulting	 equation	 is	 known	 as	 the	 dispersion	 equation	 because	 it	 describes	 the
dependence	of	wave	vector	on	frequency	(in	addition	 to	 the	wave	number	k0,	 the	 tensor
components	κx,	κy,	κz	 can	also	depend	on	 frequency).	On	 the	other	hand,	Equation	6.15
determines	a	3D	closed	surface	in	the	wave	vector	space	with	coordinate	axes	kx,	ky,	and
kz.

We	introduce	vector	n	=	k/k0	with	components	ni	=	ki/k0	=	n	cos	γi,	whose	magnitude	is
equal	to	the	refractive	index	n	of	 the	wave	propagating	in	a	given	direction.	Here,	γi	are
the	 angles	 formed	 by	 the	 wave	 vector	 k	 with	 the	 corresponding	 coordinate	 axes	 (see
Figure	6.2).

Expanding	the	determinant	in	Equation	6.15,	we	get	the	equation	that	is	often	referred
as	the	equation	for	the	wave	normal	lines	(here	we	put	κm	=	1):

n2(κxnx2+κyny2+κznz2)−[	nx2κx(κy+κz)+ny2κy(κz+κx)+nz2κz(κx+κy)
]+κxκyκz=0. (6.16)

For	a	wave	of	fixed	frequency,	this	equation	is	power	four	relative	to	the	refractive	index.
For	each	direction	in	space,	there	are	two	positive	roots	of	this	equation,	that	is,	two	values
of	the	wave	number	k	and	the	refractive	index	n.	For	example,	for	propagation	along	the
principal	axis	z,	it	is	necessary	to	put	n	=	nz,	nx	=	ny	=	0	since	kx	=	ky	=	0.	Then,	Equation
6.16	takes	the	form

n4−n2(κx+κy)+κxκy=0, (6.17)



FIGURE	6.2	Orientation	of	vector	k	in	the	anisotropic	material.

from	where	we	find	two	values	of	the	refractive	index

n12=κx   and  n22=κy. (6.18)

Thus,	in	an	anisotropic	medium	in	a	given	direction	two	independent	waves	with	different
wave	numbers	and	different	phase	velocities	can	propagate	(these	two	waves	are	referred
to	 as	normal	waves).	 It	 can	 be	 shown	 that	 the	 displacement	 vectors	D1	 and	D2	 of	 two
linearly	polarized	normal	waves	are	orthogonal	to	each	other	(see	Figure	6.3)	and	have	the
following	dependence	on	the	coordinates	and	time:

Dj=Dj0exp[	i(ωt−kjz)	],  j=1,2, (6.19)

where	the	wave	numbers	kj	are	determined	by	the	following	equation:

kj=k0nj.

As	it	was	already	noted,	for	a	wave	in	an	anisotropic	medium	(such	as	a	single	crystal),
which	we	will	consider	further,	it	is	necessary	to	distinguish	the	propagation	direction	of
the	 wave	 phase	 (i.e.,	 the	 direction	 of	 the	 wave	 vector	 k)	 and	 the	 direction	 of	 energy
propagation	(in	crystal	optics	we	identify	the	latter	as	the	ray	direction).	In	addition	to	the
velocity	of	the	wave	front	phase,	that	is,	the	phase	velocity	vph,	there	is	also	the	velocity	of
energy	propagation,	known	as	 ray	velocity	vr.	 It	 is	directed	along	 the	Poynting	vector	S
and	is	defined	as	the	ratio	of	wave	intensity	to	its	average	energy	density

FIGURE	6.3	Two	normal	waves	with	four	vectors	shown	for	n12 = κx (a) and n12 = κy (b)



vr=〈	S	〉〈	u	〉. (6.20)

In	an	anisotropic	medium,	 the	 ray	velocity	differs	 from	phase	velocity	 in	direction	 (due
mismatch	of	the	orientations	of	vectors	k	and	S)	as	well	as	in	magnitude.	It	is	possible	to
show	that	vr	is	equal	to	the	group	velocity	of	a	wave	and	it	is	related	to	phase	velocity	by
the	relationship	vph	=	vr	 cos	α,	where	α	 is	 an	 angle	between	 the	vectors	k	 and	S	 and	 is
given	by

cos	α	=ExDx+EyDy+EzDz|	E	||	D	|=ε0(κxEx2+κyEy2+κzEz2)|	E	||	D	|>0. (6.21)

Crystals,	 according	 to	 their	 optical	 properties,	 can	 be	 divided	 into	 the	 following	 three
groups:

•	Crystals	of	cubic	symmetry,	 for	which	κx	=	κy	=	κz	=	κ.	These	behave	as	an
optically	isotropic	medium.
•	Uniaxial	crystals,	for	which	κx	=	κy	<	κz	or	κx	<	κy	=	κz.	In	the	first	case,	we
speak	 about	 a	 “positive”	 crystal,	 while	 in	 the	 second	 case,	 we	 talk	 about	 a
“negative”	crystal.
•	Biaxial	crystals,	for	which	all	three	principal	values	of	the	tensor	of	dielectric
permittivity	are	different,	that	is,	κx	<	κy	<	κz.

Exercise	6.2
Derive	 from	 the	 system	of	 equations	(6.8),	 the	 equation	 for	 the	wave	 normal	 lines	 in	 a
nonmagnetic	medium	(κm	=	1)	with	diagonal	dielectric	permittivity	tensor	κ^.

Solution.	We	rewrite	the	third	and	the	second	equations	of	the	system	(6.8)	in	the	forms

H=1ωμ0k×E,   D=1ωk×H.

Then,	we	eliminate	the	magnetic	intensity	H	from	these	two	equations

D=−1μ0ω2k×(k×E)=−k2μ0ω2m×(m×E)=−ε0n2m×(m×E).

Here,	we	 introduce	 the	unit	vector	m=k/k,  k=(ω/c)n,  and  c=1/ε0μ0.	Taking	 into	account
the	relationship

A×(B×C)=B(A⋅C)−C(A⋅B),
we	get

D=−ε0n2m×(m×E)=−ε0n2[	m(m⋅E)−E	]=ε0n2[	E−m(m⋅E)	].
From	this	equation,	we	can	find	the	projections	of	the	electric	displacement	vector	on	the
chosen	coordinate	axes:

Dx=ε0n2[	Dxε0κx−mx(E⋅m)	],   Dx(1n2−1κx)=−ε0mx(E⋅m),Dxmx=
−ε0mx2(E⋅m)1n2−1κx,  Dymy=−ε0my2(E⋅m)1n2−1κy,   Dzmz=−ε0mz2(E⋅m)1n2−1κz.
Finally,	we	add	the	last	three	relationships:



Dxmx+Dymy+Dzmz=−ε0(E⋅m)(mx21n2−1κx+my21n2−1κy+mz21n2−1κz).
Since	the	vectors	D	and	m	are	perpendicular	to	each	other,	then

D⋅m=Dxmx+Dymy+Dzmz=0.
And	this	gives

mx21n2−1κx+my21n2−1κy+mz21n2−1κz=0.

This	equation	can	be	reduced	to

κxmx2n2−κx+κymy2n2−κy+κzmz2n2−κz=0.

We	 make	 a	 series	 of	 transformations	 in	 this	 equation	 by	 adding	 the	 term
mx2+my2+mz2=1	and	performing	the	summation

κxmx2n2−κx+mx2+κymy2n2−κy+my2+κzmz2n2−κz+mz2=1,n2mx2n2−κx+n2my2n2−κy+n2mz2n2−κz=1.

By	the	definition	nmα	=	nα,	so	we	get	an	equation	for	the	wave	normal	lines	in	the	form	of
Equation	6.16	for	a	nonmagnetic	medium,	that	is,	for	κm	=	1

nx2n2−κx+ny2n2−κy+nz2n2−κz=1.

6.3				WAVES	IN	UNIAXIAL	CRYSTALS
Uniaxial	 crystals	 are	 the	most	 important	 and	 at	 the	 same	 time	 the	 simpler	 examples	 of
anisotropic	 media.	 In	 uniaxial	 crystals,	 there	 is	 one	 preferred	 direction	 (optical	 axis),
which	coincides	with	one	of	the	principal	dielectric	axes.	The	directions	of	the	other	two
principal	axes	are	arbitrary.	If,	for	example,	the	optical	axis	coincides	with	the	z-axis,	then
κx	=	κy	=	κ⊥	and	κz=κ∥.	The	values	κ∥ and κ⊥	are	called	the	longitudinal	and	transverse
dielectric	constants	of	a	uniaxial	crystal.	If	the	wave	does	not	propagate	along	the	optical
axis,	the	vectors	E	and	D	can	be	decomposed	into	components	directed	along	the	optical
axis,	E∥, D∥,	and	perpendicular	to	it,	E⊥,	D⊥.	For	these	components,	we	have

D∥=ε0κ∥E∥,      D⊥=ε0κ⊥E⊥. (6.22)

Let	the	wave	vector	k	 form	an	angle	θ	with	 the	optical	axis	z.	The	plane	defined	by	 the
wave	vector	k	and	 the	optical	axis	z	 is	called	 the	principal	section	of	 the	crystal.	 For	 a
uniaxial	crystal,	Equation	6.16	takes	the	form

(n2−κ⊥)[	κ∥nz2+κ⊥(nx2+ny2)−κ∥κ⊥	]−0, (6.23)

that	is,	it	splits	into	two	equations

n02=κ⊥, (6.24)

nz2κ⊥+nx2+ny2κ∥=1, (6.25)

corresponding	 to	 two	 normal	 waves	 of	 a	 uniaxial	 crystal.	 The	 wave	 determined	 by
Equation	6.24	 is	called	ordinary	 as	 it	would	propagate	 in	a	uniaxial	crystal	 in	 the	 same



way	 as	 it	 would	 propagate	 in	 an	 isotropic	medium	with	 a	 refractive	 index	 n=κ⊥.	 The
refractive	index	of	the	second	wave,	as	follows	from	Equation	6.25,	depends	on	the	angle
θ,	that	is,	on	the	direction	of	the	wave	propagation.	This	wave	is	called	the	extraordinary
wave.

The	ordinary	wave	propagates	in	a	crystal	with	the	same	phase	velocity	vo	=	c/no	in	all
directions.	 The	 phase	 velocity	 of	 the	 extraordinary	 wave	 ve	 =	 c/ne	 depends	 on	 the
propagation	angle	relative	to	the	optical	axis.	Thus,	if	the	wave	vector	lies	in	the	plane	of
z0y,	then	kz	=	k0n	cos	θ,	ky	=	k0n	sin	θ,	kx	=	0,	and	for	the	refractive	indices	of	the	ordinary
and	extraordinary	waves,	we	get

n0=κ⊥,   ne=κ⊥κ∥κ⊥sin2θ+κ∥cos2θ. (6.26)

If	the	wave	propagates	along	the	optical	axis,	then	θ	=	0	and	no=ne=κ⊥,	that	is,	the	phase
velocities	 of	 the	 ordinary	 and	 extraordinary	waves	 are	 the	 same	 (vo	 =	 ve).	 The	 greatest
difference	in	refractive	indices	and	phase	velocities	of	the	two	normal	waves	is	achieved
as	the	wave	propagates	in	a	direction	perpendicular	to	the	optical	axis.

Consider	 the	 polarization	 of	 the	 ordinary	 and	 extraordinary	 waves.	 To	 each	 of	 two
normal	 waves,	 there	 corresponds	 a	 particular	 case	 of	 orientation	 of	 an	 electric
displacement	vector	D	(Figure	6.4).

FIGURE	6.4	Orientation	of	vectors	E,	D,	S,	and	k	 in	(a)	ordinary	and	(b)	extraordinary
waves.

Case	1.	Vector	D	 of	 an	 ordinary	wave	 is	 perpendicular	 to	 the	 principal	 section	 and	 the
principal	 optical	 axis	 (Figure	 6.4a).	 Then,	D	 =	 D⊥	 =	 ε0κ⊥Κ⊥,	 that	 is,	 D	 and	 E	 are
collinear	and	E	⊥	k,	as	well	as	in	an	isotropic	medium.	Vectors	k	and	S	are	also	collinear,
that	is,	the	directions	of	a	wave	vector	and	Poynting	vector	coincide.

Case	2.	Vectors	D	and	E	of	the	extraordinary	wave	lie	in	the	plane	of	the	principal	section
(Figure	 6.4b).	 If	 θ ≠ (0, ± π/2),	 both	 vectors	 have	 both	 longitudinal	 and	 transverse
components	 and	 are	 not	 collinear	 each	 other.	 In	 this	 case,	 D	⊥	 k	 and	 E	⊥	 S.	 The
directions	 of	 phase	 and	 ray	 velocities	 coincide	 only	 for	 propagation	 along	 the	 principal
optical	axis	or	perpendicular	to	it.

If	an	electromagnetic	wave	enters	 into	a	uniaxial	crystal	 from	an	 isotropic	medium,	 it
generally	 generates	 two	 linearly	 polarized	 waves	 propagating	 inside	 the	 crystal	 with
different	 phase	 and	 ray	 velocities.	 This	 phenomenon	 is	 called	 a	 birefringence.	 In	 the
following	text,	we	consider	it	in	more	detail.

Assume	that	a	nonpolarized	plane	wave	is	incident	at	an	angle	φ	on	the	plane	boundary
between	a	uniaxial	crystal	and	vacuum.	Assume	that	the	optical	axis	of	the	crystal	lies	in



the	plane	of	incidence	and	is	directed	at	an	arbitrary	angle	to	the	boundary	plane.	We	use
Huygens’	 principle	 to	 determine	 the	 ordinary	 and	 extraordinary	 rays	 in	 the	 crystal.
Huygens’	principle	states	that	any	point	on	a	wave	front	of	an	electromagnetic	wave	may
be	 regarded	 as	 the	 source	 of	 secondary	 waves	 and	 the	 surface	 that	 is	 tangent	 to	 the
secondary	waves	at	a	later	time	t	can	be	used	to	determine	the	future	position	of	the	wave
front	at	t.

To	determine	the	wave	surface	of	the	propagating	wave	at	later	times,	it	is	necessary	to
construct	the	envelope	of	the	wave	surfaces	of	these	secondary	waves.	For	a	time	during
which	 the	 right	 edge	 of	 the	 front	AB	 reaches	 a	 point	B′	 on	 the	 crystal	 surface,	 two	 ray
surfaces—spherical	 and	ellipsoidal—appear	around	each	point	of	 the	 surface	between	A
and	B′.	These	two	surfaces	coincide	with	each	other	along	the	optical	axis.

Figure	6.5	shows	the	ray	surfaces	centered	at	point	A	 in	the	case	of	a	positive	crystal,
when	the	ellipsoid	is	 inscribed	in	 the	sphere.	We	draw	the	tangents	A′B′	and	A″B′	 to	 the
sphere	and	the	ellipsoid,	respectively.	The	lines	connecting	a	point	A	to	points,	where	the
spherical	and	ellipsoidal	surfaces	intersect	with	tangents	A′B′	and	A″B′,	give	the	direction
of	ordinary	and	extraordinary	rays,	respectively,	with	refraction	angles	that	are	different	in
each	 case.	 Thus,	 unlike	 an	 ordinary	 ray,	 the	 direction	 of	 an	 extraordinary	 ray	 and	 the
direction	of	a	normal	to	the	corresponding	wave	front	do	not	coincide.

FIGURE	6.5	Refraction	on	the	surface	of	positive	crystal.

Since	 the	 principal	 section	 of	 the	 crystal	 coincides	 with	 the	 plane	 of	 the	 page,	 the
electric	 vector	 of	 the	 ordinary	 ray	 E0	 oscillates	 perpendicular	 to	 this	 plane,	 while	 the
electric	vector	of	the	extraordinary	ray	Ee	oscillates	in	the	plane	of	the	page.

Exercise	6.3
A	linearly	polarized	wave	is	incident	normally	on	a	uniaxial	crystalline	plate	whose	optical
axis	forms	an	angle	α	=	45°	with	the	normal	to	the	surface	of	the	plate.	Show	that	for	an
arbitrary	thickness	d	of	the	plate,	the	originally	linearly	polarized	wave	after	transmission
through	the	plate	will	emerge	elliptically	polarized.	Consider	different	particular	cases	for
the	plate	thickness.

Solution.	 Let	 us	 write	 the	 equations	 that	 describe	 the	 oscillations	 of	 the	 electric	 field
vector	in	the	coordinate	system	of	optical	axis	after	the	wave	emerges	from	the	plate	(note
that	refractive	indices	are	no	and	ne	for	ordinary	and	extraordinary	waves	in	the	coordinate
system	of	optical	axis)

Ex=E0 cos(ωt+φe),   Ey=E0 cos(ωt+φo),



where	the	phase	shift	for	each	wave	corresponding	to	the	plate	thickness	is	equal	to

φe=2πλned,   φo=2πλnod.

Let	us	find	the	projections	of	these	components	on	the	axes	of	a	coordinate	system	of	the
plate	 as	 the	 optical	 axes	 form	angle	α	=	45°	with	 the	 normal	 to	 the	 plate	 and	 take	 into
account	that	cosα=sin	α =1/2

Ex′=E0 cos(ωt+φe)cos α+E0 cos(ωt+φo)sin	α        =E02[	cos(ωt+φe)+cos(ωt+φo)	],Ey′=
−E0 cos(ωt+φe)sin α+E0 cos(ωt+φo)cos	α       =E02[	−cos(ωt+φe)+cos(ωt+φo)	].

Let	us	perform	summation	of	the	trigonometric	functions	in	the	square	brackets

Ex′=2E0 cos(ωt+φe+φo2)cos(φe−φo2),Ey′=2E0 sin(ωt+φe+φo2)sin(φe−φo2).

And	let	us	then	introduce	Δφ=φe−φo.	Then,	these	relationships	can	be	written	as	follows:

Ex′2E0 cos(Δφ/2)=cos(ωt+φe+φo2),Ey′2E0 sin(Δφ/2)=sin(ωt+φe+φo2).

In	order	 to	 eliminate	 time	 from	 these	equations,	 let	us	 square	 them	and	add	 them.	As	a
result,	we	get

Ex′22E02cos2(Δφ/2)+Ey′22E02sin2(Δφ/2)=1.

This	equation	represents	an	ellipse	with	axes	A	and	B:

A=2E0 cos(Δφ2)=2E0 cos[	πλ(ne−n0)d	],B=2E0 sin(Δφ2)=2E0 sin[	πλ(ne−n0)d	].

The	transmitted	light	is	generally	elliptically	polarized,	and	the	axes	of	the	ellipse	form	an
angle	of	45°	with	the	normal	to	the	plate.	In	the	case	when	π(ne−n0)d/λ=π/4+mπ/2,	where
m	=	0,	1,	2…,	the	polarization	becomes	circular	since	|A|	=	|B|.	The	thickness	of	the	plate
in	 this	 case	must	 be	 equal	 to	d	 =	 (1	 +	 2m)λ/(4(ne	 –	no)).	 The	 rotation	 direction	 of	 the
electric	field	vector	can	be	clockwise	or	counterclockwise.	In	the	case	when	π(ne	–	no)d/λ
=	mπ/2	or	d	=	mλ/(2(ne	–	no)),	the	transmitted	beam	is	linearly	polarized	along	either	the	x-
or	y-axis.

6.4				REFRACTIVE	INDEX	ELLIPSOID
The	constitutive	relations	(6.2)	for	the	electric	field	in	an	anisotropic	medium,	written	in
principal	axes	coordinate	system,	have	the	forms

Dx=ε0κxEx,   Dy=ε0κyEy,   Dz=ε0κzEz. (6.27)

Taking	into	account	these	equations,	the	expression	for	the	energy	density	of	the	electric
field	of	a	wave	in	an	anisotropic	medium,	ue	=	D	⋅	E/2,	may	be	expressed	as

Dx2κx+Dy2κy+Dz2κz=2ε0ue. (6.28)

For	a	 transparent	medium,	energy	density	ue	 is	constant.	We	 introduce	 in	Equation	6.28
the	following	new	variables:

X=Dx2ε0ue,   Y=Dy2ε0ue,   Z==Dz2ε0ue. (6.29)



Then,	we	use	the	relation	κi=ni2.	Hence,	Equation	6.28	can	be	written	as

X2nx2+Y2ny2+Z2nz2=1. (6.30)

This	equation	represents	 the	surface	of	a	 triaxial	ellipsoid,	which	 is	called	 the	refractive
index	ellipsoid	or	optical	indicatrix.	Any	ellipsoid	described	by	an	equation	that	has	the
form	of	Equation	6.30	has	generally	two	circular	sections.	The	directions,	perpendicular	to
such	circular	 sections,	 coincide	with	 the	optical	 axes	of	 the	crystal.	 In	Figure	6.6,	 these
directions	are	shown	by	lines	OO′	and	OO″.

Let	us	draw	from	the	ellipsoid	center	a	straight	 line	in	the	direction	of	 the	wave	front
propagation,	 that	 is,	 in	 the	 direction	 of	 a	 unit	 vector	m	 =	 k/k.	 The	 intersection	 of	 the
ellipsoid	by	a	plane	that	is	perpendicular	to	the	direction	described	by	the	Equation	6.31

Xmx+Ymy+Zmz=0 (6.31)

is	an	ellipse	(as	shown	in	Figure	6.7).	The	lengths	of	the	semiaxes	of	this	ellipse	are	the
refraction	 indices	 of	 waves	 propagating	 in	 the	 given	 direction.	 The	 directions	 of	 these
semiaxes	are	parallel	to	vectors	of	the	electric	displacement	D1	and	D2	of	the	wave	fields
of	ordinary	and	extraordinary	waves.

Thus,	by	specifying	 the	wave	direction	 in	a	crystal	and	choosing	 the	ellipsoid	section
perpendicular	to	this	direction,	it	is	possible	to	find	the	corresponding	indices	of	refraction
from	the	 lengths	of	 the	semiaxes	of	 the	 resulting	ellipse.	The	directions	of	 the	semiaxes
indicate	 the	 oscillation	 directions	 of	 the	 wave	 electric	 field	 in	 the	 crystal	 and,	 hence,
determine	the	polarization	of	the	two	normal	plane	waves	arising	in	a	crystal.

FIGURE	6.6	The	refractive	index	ellipsoid	and	the	directions	of	the	optical	axes	OO′	and
OO″	of	the	crystal.

FIGURE	6.7	The	intersection	of	the	refractive	index	ellipsoid	by	a	plane	perpendicular	to
the	direction	of	propagation.

For	 a	 better	 understanding	 of	 light	 propagation	 in	 crystals,	 a	 number	 of	 surfaces	 that
describe	 the	 optical	 properties	 are	 introduced.	 In	 order	 to	 show	 clearly	 how	 the	 wave



velocity	depends	on	the	direction	of	wave	propagation,	the	wave	normal	surface	is	used.
The	 equation	 for	 this	 surface	 is	 obtained,	 if	 instead	 of	 nx,	 ny,	 nz	 in	 the	 equation	 for
ellipsoid	 like	 Equation	 6.30,	 the	 components	 of	 the	 phase	 velocity	 vx,	 vy,	 vz	 in	 the
corresponding	coordinate	axes	are	used	as	the	principal	semiaxes	of	the	ellipsoid,	that	is,

X2vx2+Y2vy2+Z2vz2=1. (6.32)

To	 construct	 ellipsoid	 described	 by	 this	 equation,	 it	 is	 necessary	 to	 draw	 lines	 in	 the
directions	x,	y,	z	whose	lengths	are	equal	to	the	values	of	phase	velocities	vx,	vy,	vz	in	the
corresponding	direction	(Figure	6.8).

For	each	direction,	there	are	two	values	of	velocities;	therefore,	there	are	two	surfaces
of	wave	 normals.	 For	 an	 ordinary	wave,	 the	 surface	 is	 represented	 by	 a	 sphere;	 for	 the
extraordinary	 wave,	 it	 has	 the	 shape	 of	 an	 ellipsoid	 of	 rotation.	 The	 ellipsoid	 and	 the
sphere	coincide	with	each	other	at	the	points	of	intersection	with	the	optical	axis.	If	for	all
other	 directions	 ne	 >	 no,	 then	 ve	 <	 vo,	 and	 the	 crystal	 is	 called	 positive.	 For	 negative
crystals,	ne	<	no	and	ve	>	vo.	For	a	positive	crystal,	 the	ellipsoid	of	 rotation	 is	elongated
and	 inscribed	 in	 the	 sphere	 (Figure	 6.8a),	 and	 for	 the	 negative,	 compressed	 and
circumscribed	about	a	sphere	(Figure	6.8b).

Exercise	6.4
In	 an	 anisotropic	 nonmagnetic	 (κm	 =	 1)	 medium,	 in	 a	 given	 direction,	 two	 linearly
polarized	normal	waves	with	different	wave	numbers	and	phase	velocities	are	propagating.
Show	that	the	vectors	of	electric	displacement	D1	and	D2	of	these	waves	are	orthogonal	to
each	other.

Solution.	We	introduce	the	projection	of	the	phase	velocity	along	the	principal	axes	of	the
crystal	x,	y,	z	and	the	velocity	of	the	wave	along	the	normal	m

vx=cκx,   vy=cκy,   vz=cκz,   v=cn.

We	then	use	the	relation	obtained	in	Exercise	6.2:

Dαmα=−ε0mα2(E⋅m)1n2−1κα,     α	=	x,y,z.

FIGURE	6.8	The	wave	normal	surfaces	for	(a)	positive	and	(b)	negative	crystals.

Then,

Dα=−ε0mα(E⋅m)1n2−1κα=−ε0c2mα(E⋅m)v2−vα2.
Each	of	the	values	of	the	velocity	v	or	n	will	correspond	to	a	certain	value	of	the	electric



displacement	D1	and	D2:

D1⋅D2=D1xD2x+D1yD2y+D1zD2z               =ε02c4(E⋅m)2{
mxv12−vx2⋅mxv22−vx2+myv12−vy2⋅myv22−vy2+mzv12−vz2⋅mzv22−vz2	}               

=ε02c4(E⋅m)2v12−v22{
mx2v12−vx2⋅mx2v22−vx2+my2v12−vy2⋅my2v22−vy2+mz2v12−vz2⋅mz2v22−vz2

}              =ε02c4(E⋅m)2v12−v22{	mx2v12−vx2+my2v12−vy2+mz2v12−vz2−
(mx2v22−vx2+my2v22−vy2+mz2v22−vz2)	}=0,

where	we	took	into	account	that	for	each	wave	the	following	equation	holds:

mx2nα2−κx+my2nα2−κy+mz2nα2−κz=0.

Thus,	D1	⋅	D2	=	0,	which	means	that	vectors	D1	and	D2	are	orthogonal	to	each	other,	that
is,	D1	⊥	D2.

6.5				OPTICALLY	ACTIVE	MEDIA
The	interest	in	the	study	of	artificial	composite	media	started	in	the	nineteenth	century	and
continues	 until	 today.	 These	 media	 possess	 the	 optical	 activity:	 optical	 activity	 is	 the
ability	of	a	medium	to	rotate	polarization	plane	of	light	that	travels	through	the	medium.
The	rotation	of	the	polarization	plane	of	a	light	wave	in	a	medium	can	occur	either	in	the
clockwise	 rotation	 direction	 or	 in	 the	 counterclockwise	 direction.	 Examples	 are	 a	 bi-
isotropic	medium	and	its	special	case—a	chiral	medium.

The	 definition	 of	 chirality	was	 first	 given	 by	 Thompson,	 better	 known	 in	 science	 as
Lord	Kelvin	 (among	 other	 things,	 he	 introduced	 in	 thermodynamics	 the	 concept	 of	 the
absolute	 temperature	scale).	 It	 is	based	on	 the	fact	 that	a	chiral	object	does	not	coincide
with	its	mirror	image.	Numerous	experimental	data	indicate	that	in	nature	the	symmetry	of
“right”	and	“left”	is	often	broken.

There	are	molecules	of	 the	same	chemical	composition,	which	differ	only	by	 the	 fact
that	 they	 are	 the	mirror	 images	 of	 each	 other	 (e.g.,	 glucose,	 tartaric	 acid).	 In	 1860,	 the
biologist	Louis	Pasteur	explained	the	nature	of	optical	activity.

In	1888,	F.	Reynittser	discovered	liquid	crystals	(LCs),	that	form	an	important	class	of
natural	 optically	 active	 media	 and	 find	 wide	 practical	 application	 in	 modern	 optics.
Almost	all	LCs	consist	of	organic	compounds.

We	distinguish	the	following	three	types	of	LCs,	which	differ	in	the	degree	of	order	of
molecular	arrangement.

Nematic	LCs	are	characterized	by	the	existence	of	an	orientational	order	with	the	long
axes	of	the	molecules	directed	along	a	preferred	direction.	In	this	case,	positional	order	is
absent	(unlike	real	solid	crystals,	for	which	there	is	a	long-range	order	in	the	arrangement
of	the	centers	of	the	molecules).	Molecules	themselves	slip	continuously	in	the	direction
of	 their	 long	 axes,	 revolving	 around	 them	 while	 keeping	 the	 orientation	 order.	 The
molecules	of	nematic	LCs	are	not	chiral	but	are	identical	to	their	mirror	images.	There	are
also	nematic	phases,	in	which	the	molecules	have	a	disklike	shape.	These	phases	of	LCs
are	characterized	by	a	structure	consisting	of	oriented	disks.

Smectic	LCs	are	characterized	by	both	orientational	and	positional	order.	The	molecules



are	arranged	so	that	their	axes	not	only	are	parallel	to	each	other	but	also	form	a	layered
structure.	The	layers	can	slide	over	each	other,	and	each	of	the	molecules	can	move	in	two
dimensions:	it	can	slide	together	with	the	layer	and	rotate	around	its	longitudinal	axis.	We
distinguish	also	chiral	smectic	LCs,	in	which	the	longitudinal	axes	of	the	molecules	of	one
layer	are	turned	by	a	small	angle	relative	to	molecules	of	the	adjacent	layer.

Cholesteric	LCs	have	layered	structure	in	which	for	each	layer	there	is	a	small	change
of	the	molecule	axis	orientation	in	relation	to	the	adjacent	layer.	They	are	characterized	by
a	distance	 (period)	 at	which	 the	orientation	vector	 (director)	 rotates	by	360°.	For	many
cholesteric	LCs,	 this	 distance	 is	 comparable	with	 the	wavelength	 of	 visible	 light	 and	 in
many	respects	this	fact	determines	their	optical	properties.

Heating	 LCs	 of	 this	 type	 on	 a	 few	 tenth	 of	 degree	 slightly	 changes	 the	 angle	 of
molecules’	 rotation	 in	 the	 adjacent	 layers	 of	 molecules.	 For	 all	 LCs,	 which	 consist	 of
thousands	 of	molecular	 layers,	 this	 leads	 to	 a	 change	 in	 the	 angle	 of	 the	 reflected	 light
rotation	resulting	in	a	change	of	color.

In	some	natural	solid-state	crystals,	the	two	structural—right-handed	and	left-handed—
forms	are	found.	Crystals	possess	optical	activity	if	they	have	no	center	of	symmetry.	An
example	of	such	a	crystal	is	quartz,	which	in	nature	can	exist	in	two	types—right-handed
and	 left-handed.	 Let	 us	 note	 that	 in	 the	 optical	 range,	 it	 is	 possible	 to	 create	 artificial
optical	activity	 in	a	medium.	Thus,	when	an	optically	 inactive	substance	 is	placed	 in	an
external	magnetic	field,	a	rotation	of	the	polarization	plane	of	a	wave	propagating	in	the
medium	is	observed.

An	 artificial	 chiral	 medium	 consists	 of	 a	 set	 of	 conducting	 mirror-asymmetric
microelements	uniformly	distributed	in	an	isotropic	nonconducting	medium.	Interest	to	the
study	 of	 the	 electrodynamic	 properties	 of	 such	 artificial	 media	 is	 connected	 with	 the
ability	to	create	composite	media	structured	on	microscopic	and	nanometer	scales.	Right-
and	 left-handed	 metal	 spirals,	 open	 rings	 with	 straight	 orthogonal	 ends,	 cylinders	 with
conductivity	along	helical	lines,	particles	in	the	form	of	the	Greek	letter	Ω,	and	others	are
examples	of	chiral	structural	elements.	In	the	scientific	literature,	these	structural	elements
are	 often	 called	 electromagnetic	 particles.	 The	man-made	media	 can	 possess	 properties
that	are	much	broader	than	the	properties	of	natural	chiral	media	in	the	optical	range.	For
natural	 media,	 the	 chirality	 is	 explained	 by	 the	 geometry	 of	 molecules,	 whereas	 the
elements	 of	 artificial	media	 can	 possess	more	 complex	 behavior.	 In	 particular,	 they	 can
have	resonance	properties	though	their	dimensions	are	small	compared	to	the	wavelength.
Due	to	the	use	of	the	resonance	properties	of	the	media	structural	elements,	the	chirality
becomes	 essential	 and	 properties	 of	 such	 a	 medium	 differ	 radically	 from	 those	 of
nonchiral	medium.

For	 the	 description	 of	 the	 electromagnetic	 properties	 of	 a	 chiral	 medium,	 the	 two
commonly	used	material	parameters—dielectric	permittivity	and	magnetic	permeability—
are	not	enough.	It	is	necessary	to	introduce	an	additional	dimensionless	parameter	η	that
determines	 the	 magneto-	 electric	 coupling	 and	 is	 called	 chirality	 parameter.	 The	 most
common	is	the	following	form	of	the	constitutive	equations	for	a	chiral	medium:

D=ε0(κE−iηZ0H),B=μ0(κmH+iηZ0−1E), (6.33)



where	η	>	0	and	η	<	0	for	medium	on	the	basis	of	right-handed	and	left-handed	spirals,
respectively,	and	Z0=μ0/ε0	is	an	impedance	(wave	drag)	of	vacuum.	The	chiral	properties
of	a	medium	are	connected	to	its	specific	structure,	and	they	disappear	upon	transition	to	a
continuous	medium	(l/λ	→	0,	where	l	is	the	linear	dimension	of	the	chiral	microcell).

Since	usually	 the	distance	between	adjacent	 conducting	elements	of	 a	 chiral	media	 is
comparable	 to	 the	wavelength	λ	of	electromagnetic	waves	(and	 their	 linear	dimensions	 l
much	smaller	than	the	wavelength	λ),	such	a	chiral	medium	has	a	spatial	dispersion	(i.e.,
dependence	of	material	parameters	on	the	wave	vector).

For	 the	 description	 of	 the	 electromagnetic	 properties	 of	 a	 bi-isotropic	 medium,	 it	 is
necessary	to	add	to	the	constitutive	equations	one	more	parameter.	These	equations	take	a
more	general	forms	than	for	a	chiral	medium:

D=ε0[	κE+(χ−iη)Z0H	],B=μ0[	κmH+(χ+iη)Z0−1E	], (6.34)

where	χ	is	a	dimensionless	parameter	called	the	parameter	of	nonreciprocity.	The	value	of
the	nonreciprocity	parameter	 in	natural	environment	 is	small	 (at	optical	 frequencies	χ	∼
10−4).	 In	 an	 artificial	 composite,	 the	 parameter	 of	 nonreciprocity	 can	 be	 significantly
increased	with	optimum	selection	and	arrangement	of	structural	elements	(electromagnetic
particles).	Often,	a	nonreciprocal	medium	with	zero	chirality	(η	=	0)	is	called	Tellegen’s
medium	 and	 a	 reciprocal	 chiral	 medium	 (χ	 =	 0)	 Pasteur’s	 medium.	 The	 constitutive
equations	in	the	forms	of	Equations	6.33	and	6.34	mean	 that	 the	chiral	properties	of	 the
medium	depend	on	a	right-handed	spiral.	For	a	medium	based	of	left-handed	spirals,	it	is
necessary	to	change	the	sign	of	the	chirality	parameter.

Exercise	6.5
An	 electromagnetic	 wave	 is	 incident	 on	 a	 chiral	 medium.	 This	 wave	 excites	 in	 each
structural	chiral	element	of	the	medium	an	alternating	electric	current.	This	current	in	turn
creates	electric	and	magnetic	dipole	moments	 in	each	structural	element	of	 the	medium.
The	number	of	such	elements	per	unit	volume	is	equal	to	N,	and	their	size	is	much	smaller
than	 the	 wavelength	 of	 the	 incident	 electromagnetic	 wave.	 Derive	 the	 material
relationships	(6.33)	for	such	a	medium.

Solution.	Let	us	assume	that	several	turns	of	a	conducting	coil	serve	as	a	chiral	element	of
the	medium.	Let	 us	 examine	 how	 electric	 and	magnetic	 dipoles	 are	 generated	when	 an
electromagnetic	wave	is	incident	on	such	a	chiral	element.	In	the	coil’s	vicinity,	the	wave
fields	will	have	the	following	electric	and	magnetic	longitudinal	components:	Ez	and	Hz,
directed	along	coil	axis.	The	electric	dipole	component	pez	depends	on	the	electric	field	of
the	electromagnetic	wave	as	well	as	on	the	magnetic	field	that	penetrates	the	turns	of	the
coil	and	thus	creates	a	circular	current,	that	is,

pez=ε0αeEz+ε0αemZ0Hz=ε0(αeEz+αemZ0Hz),

where

αe	is	the	electric	polarizability	of	the	coil
αem	is	the	parameter	of	electromagnetic	polarizability	of	the	coil



Z0	is	the	impedance	of	vacuum

By	analogy,	an	expression	for	the	magnetic	dipole	moment	of	the	open-ended	coil	pmz,
which	is	created	by	the	circular	electric	current	and	is	directed	along	the	coil’s	axis,	can	be
written.	At	the	same	time,	a	circular	current	is	created	by	the	magnetic	field,	which	passes
through	the	coil,	as	well	as	by	the	axial	electric	field.	Therefore,

pmz=μ0αmHz+μ0αmeZ0−1Ez=μ0(αmHz+αmeZ0−1Ez),

where

αm	is	the	magnetic	polarizability	of	the	coil

αme	is	the	magnetoelectric	polarizability	parameter	of	the	coil

Using	 the	 symmetry	 of	 the	 problem,	we	 can	 show	 that	 these	 parameters	 are	 related	 as
follows:

αme=−αem=±iβ,

where	β	is	a	positive	real	magnitude.	Upper	sign	in	the	right-hand	side	of	this	expression
corresponds	 to	 the	 “right”	 coils	 and	 lower	 sign	 to	 the	 “left”	 coils.	 Taking	 into	 account
these	relationships,	the	expressions	for	dipole	moments	of	the	coil	take	the	forms

pez=ε0(αeEz∓iβZ0Hz),pmz=μ0(αmHz±iβZ0−1Ez).
Let	 us	 write	 the	 general	 relationships	 for	 the	 electric	 displacement	 and	 magnetic	 field
vectors

D=ε0E+P=ε0E+NPe,   B=μ0H+M=μ0H+NPm.

We	substitute	into	these	relationships	the	expressions	for	the	dipole	moments	for	a	single
coil.	As	a	result,	we	get

D=ε0(1+Nαe)E∓iε0βNZ0H,B=μ0(1+Nαm)H±iμ0βNZ0−1E.
We	then	introduce	in	these	expressions	the	dielectric	permittivity	of	the	medium	1	+	Nαe	=
ε,	the	magnetic	permeability	of	the	medium	1	+	Nαm	=	μ,	and	the	chirality	η	=	βN.	After
this,	we	get	the	material	relationships	of	the	medium	described	by	Equation	6.33:

D=ε0(εE∓iηZ0H),B=μ0(μH±iηZ0−1E).

6.6				WAVES	IN	CHIRAL	MEDIA
1.	 In	 isotropic	 nonchiral	media,	 plane	waves	 can	 have	 linear,	 circular,	 and,	 in	 the	most
general	case,	elliptical	polarization.	Plane	waves	with	 linear	or	circular	polarization	 that
have	the	same	frequency	have	the	same	velocity	of	propagation	also.	Therefore,	any	linear
combination	of	 these	waves	propagates	without	any	distortion.	Propagating	waves	 in	bi-
isotropic	and	chiral	media	can	have	only	circular	polarization.	Waves	with	right	and	left
circular	polarizations	propagate	in	a	given	medium	with	different	velocities,	and	therefore,
their	linear	combinations	(i.e.,	waves	with	the	linear	and	elliptic	polarizations)	cannot	be
stable.

For	a	monochromatic	wave	propagating	 in	a	homogeneous	chiral	medium,	Maxwell’s
equations	for	electric	field	E	exp(iωt)	and	magnetic	intensity	H	exp(iωt)	of	the	wave	take



the	forms

∇×E=−iωμ0(κmH+iηZ0−1E),∇×H=iωε0(κE−iηZ0H),∇⋅(κE
−iηZ0H)=0,∇⋅(κmH+iηZ0−1E)=0. (6.35)

Here,	we	 assume	 that	 all	wave	 fields	 have	 harmonic	 time	 dependence,	 that	 is,	 they	 are
proportional	to	exp(iωt).

In	the	following	text,	we	will	obtain	second-order	equations	for	the	wave	fields.	To	do
this,	we	apply	to	the	right-	and	left-hand	side	of	the	first	two	equations	of	Equation	6.35
the	curl	operator:

∇×(∇×E)=−iωμ0(κm∇×H+iηZ0−1∇×E),∇×(∇×H)=iωε0(κ∇×E−iηZ0∇×H). (6.36)

Using	the	first	two	equations	of	Equation	6.35,	we	replace	∇×H and ∇×E	in	the	right-hand
side	of	Equation	6.36	and	get

∇×(∇×E)=ω2ε0μ0[	(κκm+η2)E−2iηκmZ0H	],∇×(∇×H)=ω2ε0μ0[
(κκm+η2)H+2iηκZ0−1E	]. (6.37)

We	now	use	the	relations	that	have	been	derived	by	us	earlier

∇×(∇×A)=∇(∇⋅A)−∇2A,ε0μ0=1c2,   k0=ωc.
From	the	third	and	fourth	equations	in	Equation	6.35,	we	have

∇⋅(κE)−iZ0∇⋅(ηH)=0,∇⋅(κmH)+iZ0−1∇⋅(ηE)=0. (6.38)

As	 a	 result,	 for	 a	 homogeneous	medium,	we	 obtain	 that	∇⋅E=0 and ∇⋅H=0.	 From	 these
relations,	 we	 obtain	 a	 system	 of	 coupled	 second-order	 differential	 equations	 for	 vector
fields	H	and	E:

∇2E+k02(κκm+η2)E−2ik02ηκmZ0H=0,∇2H=k02(κκm+η2)H+2ik02ηκZ0−1E=0. (6.39)

For	nonchiral	media,	the	chirality	parameter	η	=	0	and	the	system	(6.39)	becomes	a	system
of	independent	Helmholtz	equations	for	the	wave	electric	and	magnetic	fields:

∇2E+k02κκmE=0,∇2H+k02κκmH=0. (6.40)

2.	From	Equations	6.39,	it	follows	that	linearly	polarized	waves	are	not	normal	waves	of
the	 chiral	 medium.	 To	 find	 the	 normal	 waves,	 we	 will	 represent	 vectors	 of	 an
electromagnetic	field	in	the	forms

E=ER+EL,   H=HR+HL=iZ−1(ER−EL) (6.41)

where

Z=κmμ0/κε0	is	the	impedance	of	the	medium



ER	and	EL	are	the	wave	fields	with	the	right	circular	and	left	circular	polarizations

We	then	substitute	these	expressions	into	Equation	6.39.	As	a	result,	we	obtain	the	system

∇2(ER+EL)+k02(n2+η2)(ER+EL)+2k02ηκmZ0Z−1(ER−EL)=0,∇2(ER
−EL)+k02(n2+η2)(ER−EL)+2k02ηκ(ER+EL)=0, (6.42)

where	n=κκm.	After	the	simple	transformations,	we	get

∇2ER+k02(n2+2nη+η2)ER+∇2EL+k02(n2−2nη+η2)EL=0,∇2ER+k02(n2+2nη
+η2)ER−∇2EL−k02(n2−2nη+η2)EL=0. (6.43)

After	adding	these	two	equations	and	subtracting	the	second	equation	from	the	first	one,
we	get	two	uncoupled	equations	for	the	electric	field	of	the	normal	waves,	which	are	the
wave	of	the	right	and	left	circular	polarizations:

∇2ER+kR2ER=0,    ∇2EL+kL2EL=0. (6.44)

Similarly,	one	can	obtain	a	system	of	equations	for	the	magnetic	intensity

∇2HR+kR2HR=0,    ∇2HL+kL2HL=0, (6.45)

where	we	have	introduced	the	propagation	constants	of	the	waves	described	by	Equations
6.44	and	6.45:

kR=k0nR=k0(κκm+η),     kL=k0nL=k0(κκm−η). (6.46)

Here,	 we	 introduced	 the	 refractive	 indices	 of	 waves	 with	 the	 right	 and	 left	 circular
polarizations	nR,L=κκm±η.

3.	As	we	 just	 obtained,	 linearly	polarized	waves	 are	 not	 normal	waves	of	 chiral	media.
Only	 two	 linear	 combinations	of	 such	waves	 that	have	 right	or	 left	 circular	polarization
can	be	normal	waves.	For	the	waves	propagating	in	the	direction	of	z-axis,	we	will	present
these	combinations	as	follows:

ER=(i−ij)E0 exp(−ikRz),     HR=(ii+j)Z−1E0 exp(−ikRz),EL=(i+ij)E0 
exp(−ikLz),     HL=(−ii+j)Z−1E0 exp(−ikLz), (6.47)

where	i	and	j	are	the	unit	vectors	along	the	x-	and	y-coordinate	axes.	Thus,	the	two	normal
waves	in	chiral	media	have	different	propagation	constants:	kR	and	kL.	This	means	that	the
phase	 velocities	 vR	 =	 ω/kR	 and	 vL	 =	 ω/kL	 of	 the	 waves	 of	 the	 right	 and	 left	 circular
polarizations	are	also	different.

We	note	 that	 the	 signs	 in	 the	constitutive	equations	 (6.46)	and	(6.47)	 correspond	 to	 a
chiral	 medium	 on	 the	 basis	 of	 right-handed	 helices.	 For	 media,	 based	 on	 left-handed
helices,	one	has	to	change	the	sign	in	front	of	the	parameter	of	chirality	in	these	equations.
Therefore,	for	the	left-	and	right-hand	media,	the	propagation	constants	are



kR=k0nR=k0(κκm−η),     kL=k0nL=k0(κκm+η) (6.48)

and	 the	 wave	 phase	 velocities	 obey	 the	 relation	 vR	 >	 vL.	 The	 relationship	 between	 the
electric	and	magnetic	fields	of	waves	with	right	and	left	circular	polarizations	has	the	form

ER=−iZHR,     EL=iZHL. (6.49)

In	 the	 case	 of	 bi-isotropic	 medium,	 for	 which	 the	 constitutive	 equations	 are	 given	 by
Equations	6.34,	 the	 expressions	 for	 the	propagation	constants	of	 the	normal	waves	with
right	and	left	circular	polarizations	are

kR,L=k0nR,L=k0(κκm−χ2±η). (6.50)

The	electromagnetic	field	in	bi-isotropic	medium	is	represented	as	a	superposition	of	the
right	and	left	circular	polarized	waves:

E=ER+EL,H=HR+HL=iZ−1[	ER exp(iθ)−EL exp(−iθ)	], (6.51)

where	the	angle	θ	is	related	with	a	parameter	of	nonreciprocity	χ	as	θ	=	arcsin(χ/n).

Exercise	6.6
A	 linearly	 polarized	 electromagnetic	 wave	 with	 the	 amplitude	 E0	 and	 frequency	 ω	 is
incident	on	a	 chiral	 sample	with	 the	 thickness	 l	 and	 chirality	 η.	Determine	 the	 angle	 of
rotation	of	the	polarization	plane	of	the	wave	transmitted	through	the	sample.

Solution.	Let	us	assume	that	the	linearly	polarized	wave	is	propagating	along	z-axis	and	is
incident	on	the	sample	at	point	z	=	0.	The	electric	field	vector	E	at	this	point	is	parallel	to
the	x-axis.	The	field	after	transmission	through	the	sample	is	a	superposition	of	two	waves
with	right	and	left	circular	polarizations:

ERx=12E0 exp(−ikRl),     ERy=i2E0 exp(−ikRl),ELx=12E0 exp(−ikLl),     ELy=−i2E0 
exp(−ikLl),

where	propagation	constants	are	equal	to	kR,L=k0nR,L=k0(κκm±η)  and k0=ω/c.

Let	us	find	the	sum	of	these	waves:

Ex=ERx+ELx=E02[	exp(−ikRl)+exp(−ikLl)	]       =E0 cos(k0nR
−nL2l)exp(−ik0nR+nL2l)=E0 cos(k0ηl)exp(−ik0εμl),Ey=ERy+ELy=iE02[
−exp(−ikRl)+exp(−ikLl)	]      =E0 sin(k0nR−nL2l)exp(−ik0nR+nL2l)=E0 

sin(k0ηl)exp(−ik0εμl).

Since	the	phases	of	the	fields	Ex	and	Ey	are	the	same,	that	is,	φx=φy=k0κκml,	then	after
transmission	through	the	sample,	the	wave	field	is	linearly	polarized.	The	angle	of	rotation
of	 polarization	 plane	 with	 respect	 to	 y-axis,	 that	 is,	 of	 vector	 E	 with	 E=Ex2+Ey2,	 is
defined	by	the	relationship

tanθ=EyEx=sin(k0ηl)cos(k0ηl)=tan(k0ηl),   θ=k0ηl.

PROBLEMS



6.1	Write	the	equation	of	motion	for	a	valence	electron	of	an	elongated	molecule
that	 is	 part	 of	 an	 anisotropic	 crystal	 in	 the	 presence	 of	 an	 electric	 field	 of	 an
electromagnetic	 wave.	 Assume	 that	 the	 valence	 electrons	 of	 the	 elongated
molecules	 can	 move	 only	 in	 one	 direction.	 Derive	 an	 expression	 for	 the
dielectric	 permittivity	 tensor	 for	 the	 case	 in	 which	 the	 symmetry	 axes	 of	 a
crystal	 do	 not	 coincide	 with	 the	 chosen	 coordinate	 system.	 (Answer:	 κ^=
(1+χxxχxyχxzχyx1+χyyχyzχzxχzy1+χzz)	 where	 χ^=
(χxxχxyχxzχyxχyyχyzχzxχzyχzz)	is	the	dielectric	susceptibility	tensor.)
6.2	Determine	 the	decrease	 in	 the	 intensity	of	natural	 light	 that	passes	 through
two	Nicol	prisms	(crystal	polarizers);	the	plane	of	polarization	of	the	two	crystal
polarizers	forms	an	angle	α.	Each	Nicol	prism	absorbs	a	fraction	η	of	the	energy
of	the	incident	light.
6.3	A	 linearly	polarized	wave	 is	 incident	 along	 the	normal	 to	 the	 surface	of	 a
plate	made	of	a	uniaxial	crystal.	The	optical	axis	of	the	crystal	is	parallel	to	the
surface	of	the	plate.	The	plate	thickness	is	equal	to	d.	Determine	the	polarization
state	of	the	transmitted	wave.	(Answer:	For	an	arbitrary	thickness	of	the	crystal,
the	polarization	of	the	transmitted	wave	is	elliptic.)
6.4	Write	down	the	dispersion	equation	in	the	form	of	the	determinant	(6.15)	for
a	wave	propagating	along	one	of	the	principal	axes	in	a	uniaxial	crystal.	Solve
the	 dispersion	 equation	 and	 find	 the	 velocity	 of	 the	 normal	 waves.	 (Answer:
Velocity	of	normal	waves,	v1=cκmκx,    v2=cκmκy)
6.5	A	plane	monochromatic	wave	propagates	 in	an	anisotropic	medium	 that	 is
characterized	by	the	permittivity	tensor	κ^	and	scalar	magnetic	permeability	κm
(see	Equation	6.4).	Determine	the	structure	of	 the	wave,	 the	angle	between	the
vectors	 E	 and	 D,	 as	 well	 as	 phase	 and	 ray	 velocities.	 (Answer:
H=ε0μ0nκm(e×E),     D=−nc(e×H), where D=ε0κ^E and H=B/μ0κm, θ	 =
−arctan(κxz/κxy),  and vph=vr cosθ)
6.6	 A	 linearly	 polarized	 wave	 is	 incident	 normally	 on	 a	 plate	 of	 thickness	 d
made	 of	 a	 positive	 uniaxial	 crystal.	 The	 optical	 axis	 of	 the	 crystal	 lies	 in	 the
plane	 of	 the	 plate.	 The	 electric	 field	 vector	E	 of	 the	 incident	 wave	 forms	 an
angle	 α	 with	 the	 optical	 axis.	 Show	 that	 the	 transmitted	 wave	 is	 elliptically
polarized.	 (Answer:	 Ex2Eo2+Ez2Ee2−2ExEzEoEecos(Δφ)=sin2 (Δφ), where 
Ee=E cosα,  Eo=E sinα, and Δφ=(2π/λ)(ne−no)d)
6.7	Take	 the	solution	obtained	 for	Problem	6.6	and	 find	 the	 thicknesses	of	 the
plate	 that	would	 result	 in	 linear	and	circular	polarizations	of	 the	wave	passing
through	 the	 uniaxial	 plate.	 (Answer:	 If	 Le−Lo=(ne−no)d=mλ2+λ2, then 
Ex2Eo2+Ez2Ee2=1. For α	 =	 45∘Eo=Ee,	 therefore	 Ex2+Ez2=Eo2,	 which
corresponds	 to	 circular	 polarization.	 If	 Le−Lo=(ne−no)d=mλ/2,	 then	 Ez=
±EeEoEx,	which	corresponds	to	linear	polarization.)
6.8	 A	 beam	 of	 partially	 polarized	 light	 that	 consists	 of	 a	 linear	 polarized
component	 with	 intensity	 Ipol	 and	 natural	 light	 of	 intensity	 Inat	 is	 transmitted
through	 a	 polaroid	 sheet.	 Initially,	 the	 polaroid	 is	 oriented	 so	 that	 its
transmission	 plane	 is	 parallel	 to	 the	 oscillation	 plane	 of	 the	 linearly	 polarized
component	 of	 the	 beam.	 By	 turning	 the	 polarizer	 by	 an	 angle	 φ	 =	 60°,	 the
intensity	of	the	transmitted	beam	decreases	by	a	factor	of	2.	Determine	the	ratio
of	the	intensities	Inat/Ipol	of	the	natural	and	linearly	polarized	light	that	make	up



the	partially	polarized	light	as	well	as	the	degree	of	polarization	P	of	the	beam.
(Answer:	Inat/Ipol	=	1	and	P	=	1/2.)
6.9	 A	 quartz	 plate	 has	 a	 thickness	 d1	 =	 1.00	 mm	 and	 has	 the	 optical	 axis
perpendicular	 to	 the	 surface	 of	 the	 plate.	 The	 plate	 rotates	 the	 plane	 of
polarization	of	monochromatic	linearly	polarized	light	by	an	angle	φ1	=	20°.

(a)	What	should	be	the	thickness	of	the	quartz	plate	d	so	that	when	it	is
placed	between	two	polarizers	with	parallel	axes	the	transmitted	light
is	completely	extinguished?
(b)	 Calculate	 the	 length	 l	 of	 a	 tube	 filled	 with	 a	 sugar	 solution	 of
concentration	 of	 C	 =	 0.4	 g/cm3	 to	 be	 placed	 between	 the	 two
polarizers	to	obtain	the	same	effect	(the	specific	rotation	of	the	sugar
solution	is	α	=	0.6657m⋅kg⋅m−3).	(Answer:	(a)	d	=	4.50	mm	and	(b)	l
=	0.34	m.)



7Electromagnetic	Waves	in	Conducting
Media

An	 electromagnetic	wave	 propagating	 through	 a	medium	 loses	 some	 of	 its	 energy	 as	 a
result	 of	 its	 interaction	 with	 the	 medium.	 As	 a	 result,	 the	 energy	 lost	 by	 the	 wave	 is
transferred	 predominantly	 into	 the	 thermal	 energy	 of	 that	 material.	 A	 material,	 whose
electrical	 conductivity	 is	 very	 small	 (it	 is	 zero	 for	 all	 practical	 purposes),	 is	 called	 a
“dielectric”	 or	 an	 “insulator.”	 In	 dielectrics,	 the	 loss	 of	 electromagnetic	wave	 energy	 is
associated	with	 the	 phenomenon	 called	 the	 polarization	 of	 the	 dielectric.	 In	media	with
nonzero	conductivity	thermal	losses	also	take	place,	but	the	mechanism	is	fundamentally
different	from	the	loss	mechanism	in	dielectrics.	The	most	common	conducting	media	are
metals.	 Metals	 have	 strong	 absorption	 over	 a	 wide	 wavelength	 range.	 However,	 they
become	sufficiently	transparent	for	waves	in	the	far	ultraviolet	region	of	the	spectrum.	The
interaction	 of	 electromagnetic	 waves	 with	 free	 electrons	 plays	 a	 major	 role	 in	 the
absorption	of	light	in	metals.	Free	electrons	moving	in	conductors	under	the	influence	of
the	electric	field	of	the	wave	exert	a	force	on	the	positive	ions	located	at	the	crystal	lattice
sites	of	the	material.	In	this	case,	an	effect	similar	to	friction	arises,	which	is	accompanied
by	the	deformation	of	the	crystal	lattice	and	release	of	a	certain	amount	of	heat.	Due	to	the
large	amplitude	of	oscillations	of	free	electrons,	a	large	portion	of	the	wave	energy	is	spent
on	the	excitation	of	the	electrons.	Thus,	the	absorption	coefficient	of	metals	is	very	large
compared	to	that	of	insulators.

7.1				DIELECTRIC	PERMITTIVITY	AND	IMPEDANCE
OF	A	METAL

1.	The	absorption	of	electromagnetic	waves	by	a	medium	must	be	taken	into	account	if	we
assume	that	the	medium	has	a	conductivity	σ.	An	electromagnetic	wave	propagating	in	a
conducting	medium	excites	alternating	currents,	which	leads	to	a	partial	conversion	of	the
wave	energy	into	Joule	heat.	We	assume	that	the	conducting	medium	is	isotropic,	that	is,
we	assume	that	the	material	parameters	κ,	κm,	and	σ	are	scalars.	The	current	density	 j	 is
related	with	the	electric	field	E	through	Ohm’s	law	j	=	σ	E,	B	=	κmμ0H,	and	D	=	κε0E.	As
a	result,	the	two	Maxwell’s	equations	(3.34)	take	the	following	form:

∇×E=−κmμ0∂H∂t,∇×H=κε0∂E∂t+σE. (7.1)

We	will	 assume	 that	 the	 solutions	 of	 these	 equations	 have	 the	 form	 of	monochromatic
harmonic	 waves	 proportional	 to	 exp(iωt).	 As	 a	 result,	 Equations	 7.1	 for	 complex
amplitudes	E(r)	and	H(r)	become

∇×E=−iωμ0κmH,∇×H=iωε0κE+σE. (7.2)

This	system	can	be	reduced	to	the	form



∇×E=−iωμ0κmH,∇×H=iωε0κ˜E, (7.3)

where	 the	 new	 parameter	 κ˜,	 the	 complex	 permittivity	 of	 the	 conducting	medium,	 was
introduced	and	it	is	defined	as

κ˜=κ−iσε0ω=κ′−iκ″,    tanδe=κ″κ′=σε0κω=σεω. (7.4)

In	this	equation,	we	also	introduced	the	electric	loss	tangent	that	is	determined	by	the	ratio
of	 real	 part	 of	 the	 complex	 permittivity	 to	 its	 imaginary	 part.	 For	 various	 media	 in
different	frequency	ranges,	the	value	tan δe=σ/ε0κω	can	vary	several	orders	of	magnitude,
and	it	is	considered	as	one	of	the	important	parameters	of	a	material.

The	 solutions	 of	 the	 wave	 equations	 (7.1)	 can	 be	 expressed	 in	 the	 form	 of	 plane
monochromatic	waves,	which	have	the	following	forms:

E(t,r)=E0 exp[	i(ωt−k⋅r)	],H(t,r)=H0 exp[	i(ωt−k⋅r)	], (7.5)

where	E0	and	H0	 are	 the	vector	 amplitudes	of	 the	electric	 and	magnetic	 fields.	 In	 these
solutions	 of	 Maxwell’s	 equations,	 the	 fields	 E	 and	 H	 are	 complex	 functions.	 The
measurable	 values	 of	 both	 fields	 are	 described	 by	 the	 magnitudes	 of	 the	 fields	 in
Equations	7.5.

Substituting	Equations	7.5	into	Equation	7.1	and	taking	into	account	Equation	7.4,	we
obtain	the	dispersion	equation	that	relates	the	wave	vector	with	the	angular	frequency	and
medium	parameters:

k2=k02κm(κ−iσωε0), (7.6)

where	k0	=	ω/c	is	the	wave	number	for	vacuum.	From	this	expression,	it	follows	that	the
wave	number	for	a	wave	propagating	in	a	conducting	medium	has	to	be	complex,	that	is,	k
=	k′–ik″.	Separating	the	real	and	imaginary	parts	of	Equation	7.6,	we	get

(k′)2−(k″)2=k02κκm,     2k′k″=k02κmσωε0. (7.7)

From	the	solution	of	these	equations,	we	obtain	the	following	expressions	for	the	real	and
imaginary	parts	of	the	complex	wave	number:

k′=k0(κκm2[	1+(σε0κω)2+1	])1/2,k″=k0(κκm2[	1+(σε0κω)2−1	])1/2. (7.8)

These	relations	are	useful	for	very	wide	frequency	range	(0<ω<1014 s−1)	for	both	weakly
and	strongly	absorbing	media.

The	complex	impedance	of	a	conducting	medium	can	be	presented	in	the	form

Z=κ˜mμ0κ˜ε0=Z′+iZ″=|	Z	|eiζ, (7.9)

where	κ˜ and κ˜m	generally	are	complex	numbers.



In	what	follows,	we	assume	that	a	plane	wave	propagates	in	a	conducting	medium	along
the	x-axis.	In	this	case,	taking	into	account	the	complex	character	of	the	wave	number	in
an	absorbing	medium,	the	solutions	of	wave	Equations	7.5	have	the	forms

E(t,x)=E0e−k″xei(ωt−k′x),H(t,x)=H0e−k″xei(ωt−k′x), (7.10)

where	E0	and	H0	are	the	amplitudes	of	wave	fields	at	x	=	0.	From	this	equation,	it	follows
that	 in	 the	 direction	 of	 wave	 propagation,	 the	 amplitudes	 of	 the	 wave	 fields	 decrease
exponentially:

E(x)=E0e−k″x=E0e−x/δ,H(x)=H0e−k″x=H0e−x/δ. (7.11)

The	imaginary	part	of	the	wave	number	k″	describes	a	rate	of	decay	of	the	wave	amplitude
in	the	direction	of	its	propagation,	and	the	reciprocal	value	δ=1/k″	determines	the	depth	of
the	 wave	 penetration	 inside	 the	 medium.	 Note	 that	 δ	 is	 often	 called	 attenuation
coefficient.

Exercise	7.1
Find	the	frequency	dependence	of	the	conductivity	in	a	metal.	What	is	the	dependence	of
the	conductivity	in	the	region	of	high	and	low	frequencies?

Solution.	Let	us	write	the	equation	of	motion	for	a	single	electron	in	the	electric	field	of
an	electromagnetic	wave:

mdv(t)dt=eE(t)−bv(t).

The	right-hand	side	of	this	equation	includes	the	electric	force	and	a	friction-like	force	that
is	responsible	for	the	electrical	resistance.

Note	 that	 there	 are	no	 friction	 forces	 acting	on	 a	 single	 electron.	A	 single	 electron	 is
constantly	colliding	with	the	defects	of	the	crystalline	lattice	and	also	with	other	electrons,
and	 therefore,	 it	 is	 moving	 chaotically	 when	 there	 is	 no	 applied	 electric	 field.	 In	 an
external	field,	the	electron	motion	becomes	more	directed	with	some	average	velocity	that
we	can	find	from	the	equation	given	earlier.

The	electric	 field	of	 an	electromagnetic	wave	oscillates	with	 an	angular	 frequency	ω,
and	therefore,

mdv(t)dt+bv(t)=eEexp(iωt).

We	will	seek	a	solution	of	this	equation	in	the	form	v(t)=vexp(iωt).	After	its	substitution
into	the	equation	of	motion,	we	get	the	equation

m(iω+2γ)v=eE,

where	 we	 introduced	 damping	 constant	 2γ	 =	 b/m,	 which	 has	 the	 physical	 meaning	 of
collision	frequency	of	the	electron	with	the	lattice	irregularities.	From	this	expression,	we
find

v(ω)=eEm×1iω+2γ=eEm×2γ−iωω2+4γ2.

The	 current	 density	 is	 given	 by	 j(ω)=Nev(ω)=σ˜(ω)E,	 where	 N	 is	 the	 electron



concentration	per	unit	volume	and	σ˜=σ′−iσ″	is	the	complex	conductivity.	Thus,	we	get

σ˜	=	Ne2m⋅2γ−iωω2+4γ2=Ne22mγ⋅1−iω/2γ(ω/2γ)2+1=σ01−iωτ1+(ωτ)2,
where

σ0	=	Ne2τ/m	is	the	static	conductivity
τ	=	1/2γ	=	m/b	is	the	average	time	between	collisions

Let	 us	 introduce	 the	 plasma	 frequency	 ωp=Ne2/ε0m=σ0/ε0τ	 and	 separate	 real	 and
imaginary	parts	of	complex	conductivity:

σ′=Ne2m⋅2γω2+4γ2=2ε0γωp2ω2+4γ2=σ01+(ωτ)2,σ
″=Ne2m⋅ωω2+4γ2=ε0ωωp2ω2+4γ2=σ0(ω)τ1+(ωτ)2.

The	 conductivity	 σ,	which	 is	 related	with	 the	 real	 currents	 of	 the	 charge	 carriers	 in	 the
conducting	medium,	is	given	by	the	real	part	of	the	complex	conductivity,	that	is,

σ(ω)=σ′(ω)=2ε0γωp2ω2+4γ2=σ01+(ωτ)2.

For	sufficiently	low	frequencies	(ωτ	≪	1),	the	conductivity	depends	on	the	frequency:

σ(ω)=σ0(1−(ωτ)2).

We	see	 that	when	 the	 frequency	 tends	 to	zero,	 the	conductivity	of	 the	metal	 tends	 to	 its
static	limit	σ0.

At	higher	frequencies	(ωτ	≫	1),	the	real	part	of	conductivity	of	the	metal	tends	to	zero:

σ′=σ0(ωτ)2.

At	 higher	 frequencies	 (ωτ	≫	 1),	 the	 imaginary	 part	 of	 the	 conductivity	 of	 metals	 is
substantially	larger	than	its	real	part	and	the	total	conductivity	tends	to	zero:

σ″=σ0ωτ

Because	of	such	frequency	dependence,	the	metal	becomes	transparent	for	high-frequency
radiation	(e.g.,	for	X-rays).

Previously,	 we	 used	 extensively	 the	 notion	 of	 a	 complex	 electric	 permittivity	 of	 a
medium.	The	real	part	of	this	parameter	has	described	refraction	of	light	and	the	imaginary
part—its	absorbance.	However,	for	a	medium	with	finite	conductivity	σ,	the	use	of	electric
permittivity	 for	 the	 region	 of	 lower	 frequencies	 becomes	 inconvenient.	 At	 ω	→	 0,	 the
imaginary	 part	 of	 the	 electric	 permittivity	 κ″=σ′/ωε0	 tends	 to	 infinity.	 This	 is	 why	 for
physics	of	metals	it	is	more	convenient	to	work	with	complex	conductivity	whose	real	part
is	equal	to	σ′=σ=ε0ωκ″.	The	use	of	complex	electric	permittivity	and	conductivity	usually
gives	 the	 same	 results	 for	 a	wide	 range	 of	 frequencies.	 In	 one	 of	 these	 approaches,	 the
polarization	 of	 a	 medium	 is	 used	 (which	 is	 convenient	 for	 dielectrics);	 otherwise,	 the
electric	current	is	used	(which	is	convenient	for	conductors).

7.2				SKIN	EFFECT
1.	 From	 expressions	 (7.11),	 it	 follows	 that	 at	 a	 depth	 equal	 to	 δ	 inside	 the	 conducting
medium,	the	wave	amplitude	decreases	by	a	factor	of	e,	that	is,	the	value



δ	=	cω(κκm2[	1+(σ/ε0κω)2−1	])−1/2 (7.12)

determines	 the	 penetration	 depth	 of	 a	 wave	 field	 in	 a	 conducting	 medium,	 for	 which
absorption	is	given	by	the	imaginary	part	of	the	dielectric	permittivity.	We	assume	that	the
magnetic	permeability	of	the	medium	is	a	scalar,	is	real,	and	is	close	to	unity	(this	is	true
for	the	majority	of	metals,	which	are	not	ferromagnetic).

Since	the	intensity	of	a	wave	is	proportional	to	the	square	of	its	amplitude	(I∼|	E	|2),	the
energy	of	the	wave	penetrating	in	the	medium	is	restricted	in	a	layer	with	thickness	of	a
few	δ.	For	media	with	high	conductivity,	 the	 thickness	of	 this	 layer	can	be	rather	small.
For	example,	for	copper	(σ	=	5.70	×	107	S/m)	a	wave	with	frequency	f	=	ω/2π	=	100	MHz
has	a	δ	≈	6.60	μm.	For	this	reason,	the	area	near	the	surface	of	the	medium,	where	most	of
the	wave	 energy	 is	 located,	 is	 called	 the	 skin	 layer.	 The	 parameter	 δ	 is	 defined	 as	 the
thickness	 of	 the	 skin	 layer,	 and	 the	 effect	 of	 localization	 of	 the	 electromagnetic	 wave
energy	in	a	layer	near	the	medium	surface	is	called	the	skin	effect.

Let	 us	 consider	 two	 limiting	 cases	 of	 Equation	 7.12:	 the	 cases	 of	 low	 and	 high
conductivity.	In	the	case	of	low	conductivity	or	sufficiently	high	frequency	(σ≪ε0κω),	we
obtain

δ	=	2ε0cσκκm=2σε0κμ0κm=2σZ. (7.13)

In	 this	 limit,	 the	 depth	 of	 field	 penetration	 in	 a	medium	 does	 not	 depend	 on	 the	wave
frequency;	however,	the	lower	is	the	conductivity	σ,	the	deeper	is	the	penetration	of	wave
into	the	medium.	In	the	case	σ	→	0,	the	medium	becomes	nonconducting	and	the	depth	of
an	electromagnetic	field	penetration	δ	→	∞.

In	 the	 case	 of	 high	 conductivity	 or	 sufficiently	 low	 frequencies	 (σ	 ≫	 ε0κω),	 the
condition	 κ″	≫	 κ′	 is	 satisfied.	 In	 this	 case,	 it	 is	 possible	 to	 neglect	 the	 real	 part	 of	 the
dielectric	permittivity	of	the	medium	and	consider	it	to	be	purely	imaginary	and	equal	to
κ˜=−iσ/ωε0.	 The	 condition	 κ″	≫	 κ′	 is	 satisfied	 for	 metals	 in	 the	 microwave	 range	 of
frequencies.	The	expression	for	the	skin	thickness	takes	the	following	form:

δ	=	c2ε0κmσω=2μ0κmσω, (7.14)

from	 which	 it	 follows	 that	 an	 increase	 in	 the	 medium	 conductivity	 and/or	 the	 wave
frequency	 results	 in	 a	 decrease	 in	 the	 penetration	 depth.	When	ω	→	 0,	 the	 penetration
depth	δ	→	∞.	For	sufficiently	high	frequency,	the	thickness	of	the	skin	layer	can	be	very
small.	As	an	example,	we	will	give	 the	values	of	 the	 skin	 layer	 thickness	of	 copper	 for
several	frequencies.

Frequency δ

60	Hz 8.57	mm

10	kHz 0.66	mm



100	kHz 0.21	mm

1	MHz 66	μm

10	MHz 21	μm

The	complex	refractive	index	ñ	of	a	highly	conducting	medium	is	given	by

n˜=κ˜κm=−iσκmε0ω=(1−i)σκm2ε0ω, (7.15)

where	we	have	used	the	equality	−i=(1−i)/2.	The	refractive	index	modulus	is

|	n˜|=σκm2ε0ω≫1. (7.16)

This	 means	 that	 the	 angle	 of	 refraction	 at	 the	 interface	 of	 a	 dielectric	 and	 a	 highly
conducting	medium	is	close	to	zero.	Therefore,	we	conclude	that,	irrespective	of	the	angle
of	incidence	θ0,	the	refracted	wave	goes	into	the	conducting	medium	perpendicularly	to	its
surface	(this	will	be	discussed	in	more	details	in	Section	7.3	and	Figure	7.1).

The	complex	impedance	of	a	highly	conducting	medium	has	the	following	form:

Z=κmμ0κ˜ε0=−ωκmμ0iσ=(1+i)ωκmμ02σ, (7.17)

from	where	it	is	seen	that	in	this	case	Z′	=	Z″	and	tan	ζ	=	Z″/Z′	=	1,	that	is,	the	oscillations
of	the	wave	field	vectors	E	and	H	are	shifted	in	phase	by	ζ	=	π/4.

FIGURE	 7.1	 Dependence	 of	 real	 (curve	 1)	 and	 imaginary	 (curve	 2)	 parts	 of	 complex
conductivity	of	Equation	6.64	on	frequency	ω; σ0=σ(ω=0).

2.	 The	 theory	 discussed	 earlier	 is	 valid	 only	 under	 the	 condition	 that	 the	 skin	 layer
thickness	δ	is	much	larger	than	the	mean	free	path	l	of	the	electrons	in	the	medium.	It	is
assumed	 that	 due	 to	 collisions	 with	 the	 crystal	 lattice	 ions,	 electrons	 continuously	 lose
energy	to	overcome	the	ohmic	resistance	of	the	conductor.	This	energy	is	transformed	into
the	 Joule	 heat.	 The	 relation	 δ	 ≫	 l	 holds	 for	 a	 rather	 wide	 range	 of	 materials	 and
wavelengths.	However,	at	very	low	temperatures	the	situation	changes:	the	mean	free	path
length	 of	 the	 electrons	 increases	 considerably,	 and	 hence,	 the	 conductivity	 increases
significantly.	As	a	result,	there	is	a	sharp	decrease	in	the	skin	layer	thickness	and	condition
δ	≫	 l	 fails.	When	 the	mean	 free	path	 l	 of	 the	 electrons	 in	 a	 conductor	becomes	greater
than	a	skin	layer	thickness	δ,	at	rather	high	frequencies,	the	skin	effect	acquires	a	number



of	features,	thanks	to	which	it	received	the	name	anomalous.	In	the	following,	we	discuss
the	origin	of	some	of	these	features.	Since	the	electromagnetic	wave	field	along	the	mean
free	path	of	 the	electrons	 is	nonuniform,	 the	 resulting	current	at	 each	point	depends	not
only	on	the	electric	field	at	this	point	but	also	on	the	electric	field	in	its	vicinity,	which	has
dimensions	of	the	order	of	l.	Therefore,	for	the	solution	of	Maxwell’s	equations	instead	of
a	local	Ohm’s	law	j(r)	=	σ(r)E(r),	it	is	necessary	to	take	into	account	the	nonlocal	nature
of	 this	 relation	 as	 current	 density	 in	point	 r	 depends	on	 electric	 fields	 in	 the	vicinity	of
point	r.

Under	 these	conditions,	 electrons	moving	 in	various	directions	become	nonequivalent
from	 the	 point	 of	 view	of	 their	 contribution	 to	 the	 electric	 current.	At	 l	≫	 δ,	 the	main
contribution	to	the	current	comes	from	those	electrons	that	move	in	a	skin	layer	parallel	to
the	 surface	 of	 a	metal	 or	 under	 very	 small	 angles	with	 respect	 to	 the	 surface	 and	 thus
spend	 more	 time	 in	 the	 strong	 field	 area.	 This	 results	 in	 an	 attenuation	 of	 the
electromagnetic	wave	in	the	layer	near	to	the	surface.	The	quantitative	result	in	this	case
differs	from	the	case	of	a	normal	skin	effect.	In	particular,	for	the	anomalous	skin	effect,
the	 decrease	 in	 the	 wave	 field	 in	 the	 near-surface	 layer	 does	 not	 have	 anymore	 an
exponential	dependence	on	distance	as	in	Equation	7.11.

In	the	infrared	range	of	frequencies,	the	electron	may	not	be	able	to	travel	a	distance	l
during	one	period.	In	this	case,	the	wave	field	on	the	electron	path	during	one	period	can
be	 considered	 as	 uniform.	 This	 leads	 again	 to	 Ohm’s	 law	 and	 the	 skin	 effect	 becomes
normal.	Thus,	at	 low	and	very	high	frequencies,	 the	skin	effect	 is	always	normal.	 In	 the
radio	frequency	range,	depending	on	the	relationships	between	l	and	δ,	we	may	have	either
the	normal	or	the	anomalous	skin	effect.

In	practice,	the	skin	effect	is	often	undesirable.	For	example,	alternating	current	in	wires
with	a	strong	skin	effect	flows	mainly	on	the	surface	layer.	Thus,	the	central	section	of	the
wire	is	not	used.	As	a	result,	the	effective	resistance	of	the	wire	and	thus	the	power	losses
increase.

Exercise	7.2
Derive	an	expression	for	the	plasma	frequency	of	electrons	in	a	metal	using	the	continuity
equation.	 Determine	 the	 penetration	 depth	 of	 an	 electromagnetic	 wave	 incident	 on	 a
nonmagnetic	metal	with	conductivity	σ	=	5.70	×	107	S/m	at	a	frequency	equal	to	the	metal
plasma	frequency	(the	nonmagnetic	metal	used	here	is	copper	with	electron	concentration
equals	to	N	=	8.00	×	1028	m−3).

Solution.	The	charge	density	of	electrons	 in	a	metal	 is	equal	 to	ρ	=	Ne,	where	N	 is	 the
electron	concentration.	The	continuity	equation	(3.40)	relates	the	change	of	charge	density
with	current	density	as

∇⋅j+∂ρ∂t=0,
where

j	=	Ne	v	is	the	current	density
v	is	the	average	velocity	of	electrons

Let	us	differentiate	this	equation	with	respect	to	time:



∂∂t(∇⋅j)+∂2ρ∂t2=0   or    ∇⋅∂j∂t+∂2ρ∂t2=0 (7.18)

Let	 us	 write	 the	 equation	 of	 motion	 for	 an	 electron	 in	 the	 absence	 of	 collisions	 (i.e.,
without	losses):

mdvdt=eE.

Let	us	rewrite	this	equation	taking	into	account	that	v	=	j/Ne:

djdt=Ne2Em.

After	applying	to	this	equation	the	operator	∇	and	using	the	first	of	Maxwell’s	Equations
3.34,	∇⋅E=ρ/ε0,	we	get

∇⋅djdt=Ne2m∇⋅E=Ne2m×ρε0.
Substituting	∇(dj/dt)	into	the	second	equation	of	the	set	(7.18),	we	get

∂2ρ∂t2+ωp2ρ=0,

where	we	 introduced	 the	plasma	 frequency	ωp=Ne2/ε0m.	From	 this	equation,	 it	 follows
that	 free	 electrons	 oscillate	 with	 this	 frequency	 with	 respect	 to	 the	 lattice	 of	 immobile
positive	ions.

The	depth	of	penetration	of	the	wave	field	(the	width	of	skin	layer)	into	the	metal	with
high	con-ductivity	for	σ≫ε0κω	is	defined	by	the	expression

δ	=	c2ε0κmσω=	c2ε0σωp,

where	we	took	into	account	that	the	magnetic	permeability	of	the	metal	is	equal	to	unity
and	ω	=	ωp.	Since	for	copper	ωp	=	1.60	×	1016	s−1,	then	we	get	for	the	skin	layer	thickness
δ	≈	1.32	×	10−6	cm.

7.3				WAVE	INCIDENCE	ON	A	METAL	SURFACE
1.	 Consider	 a	 plane	 monochromatic	 wave	 incident	 on	 the	 plane	 boundary	 between	 a
nonabsorbing	 dielectric	 medium	 1	 and	 a	 conducting	 medium	 2	 (Figure	 7.2).	 Here,	 we
consider	 the	 propagation	 characteristics	 of	 the	 wave	 passing	 through	 the	 interface.
Regardless	of	the	polarization	of	the	incident	wave,	the	coordinate	dependence	of	the	field
vectors	of	the	transmitted	wave	is	described	by	the	expression

E2t(x,z),H2t(x,z)~e−i(k2xx+k2zz)=e−ik2(sinθ2⋅x+cosθ2⋅z), (7.19)

where	θ2	is	the	angle	of	refraction.



FIGURE	7.2	Orientation	of	the	planes	of	equal	phases	(dotted	lines)	and	equal	amplitudes
(dashed	lines)	for	a	nonuniform	electromagnetic	wave	propagating	in	a	medium.

The	boundary	conditions	for	the	tangential	components	of	the	field	vectors	are

E1x,y=E2x,y,       H1x,y=H2x,y. (7.20)

In	order	to	satisfy	these	conditions,	it	is	necessary	to	satisfy	the	relation

k1x=k2x  or   k1 sinθ0=k2 sinθ2. (7.21)

The	wave	vector	k2	 in	the	absorbing	medium	2	will	be	complex;	however,	its	projection
k2x	is	real	(the	wave	vector	k1	and	the	angle	of	incidence	θ0	are	also	real).	This	means	that
sin	θ2	and	the	refraction	angle	θ2	have	to	be	complex	numbers.	The	projection	k2z	=	k2	cos
θ2	will	also	be	complex:	k2z=k2′z−ik2z″.	Thus,	expressions	(7.19)	can	be	written	as

E2t,H2t~e−k2z″z⋅e−i(k2x⋅x+k2z′⋅z). (7.22)

This	 expression	 shows	 that	 irrespective	 of	 the	 angle	 of	 incidence,	 the	 refracted	 wave
attenuates	strictly	in	the	direction	of	the	normal	to	the	interface.	Here,	the	planes,	parallel
to	the	interface,	are	surfaces	of	equal	amplitudes.	Surfaces	of	equal	phases	are	described
by	the	equation

k2xx+k2′zz=const. (7.23)

The	normal	to	the	surfaces	of	equal	phase	is	directed	along	the	z-axis	at	an	angle	θ2,	which
has	 the	meaning	 of	 a	 real	 refraction	 angle	 (tanθ2=k2x/k2′z).	 Thus,	 the	 planes	 of	 equal
amplitude	and	of	equal	phase	do	not	coincide,	that	is,	the	refracted	wave	in	an	absorbing
medium	is	nonuniform.

2.	 In	 a	 highly	 conducting	medium	 k2′z≫k2x	 and	 the	 angle	 θ2≅0,	 that	 is,	 the	 refracted
wave	propagation	direction	is	practically	perpendicular	to	the	interface.	Surfaces	of	equal
phase	become	parallel	to	the	interface,	and	the	refracted	wave	is	approximately	uniform.
Thus,	 in	 the	 case	of	k2↑↑n0,	where	n0	 is	 a	 unit	 vector	 normal	 to	 the	 interface,	 directed
inside	of	medium	2	as	it	is	shown	in	Figure	7.2.	It	means	that	the	field	vectors	E2	and	H2,
which	are	perpendicular	 to	k2,	 are	parallel	 to	 the	 interface,	 that	 is,	 they	are	equal	 to	 the
tangential	components	of	fields,	E2τ	and	H2τ.

These	two	fields	are	connected	by	a	vector	ratio

E2τ=Z2(H2τ×n0), (7.24)

where	Z2	 is	 the	complex	 impedance	of	medium	2	defined	by	Equation	7.17	and,	 in	 this
case,	it	is	called	the	surface	impedance.

Since	at	the	interface	the	tangential	components	of	the	wave	field	obey	the	condition	of
continuity



E1τ=E2τ,     H1τ=H2τ,

then	 these	 components,	E1τ	 and	H1τ,	 of	 fields	 in	 the	 dielectric	 at	 the	 interface	 are	 also
related	by	the	following	form	(7.24):

E1τ=Z2(H1τ×n0). (7.25)

This	 condition	 is	 called	 in	 some	 books	 as	 the	 approximate	 Leontovich	 boundary
condition.	 It	 is	 often	 used	 in	 the	 calculation	 of	 electromagnetic	 fields	 in	 the	 vicinity	 of
conducting	surfaces.

In	 conclusion,	 we	 will	 discuss	 the	 limiting	 case	 of	 a	 conducting	 medium,	 when	 its
conductivity	is	considered	to	be	infinitely	large	(ideal	conductor).	For	σ	→	∞,	the	module
impedance	of	medium	2,	according	to	Equation	7.17,	tends	to	zero,	that	is,

|	Z2	|=ωκmμ0σ→0, (7.26)

meaning	 the	 vanishing	 of	 the	 electric	 field	 (and	 therefore	 of	 the	magnetic	 field)	 of	 the
wave	 inside	 the	 conductor.	Thus,	 the	 field	 of	 the	 incident	wave	 does	 not	 penetrate	 in	 a
perfect	conductor,	the	thickness	of	the	skin	layer	δ	is	zero,	and	the	Joule	heat	losses	inside
the	conductor	can	be	neglected.

Let	 us	 discuss	 the	 boundary	 conditions	 at	 the	 surface	 of	 a	 perfect	 conductor.	 For
simplicity,	we	consider	normal	incidence	of	a	wave	on	the	surface	of	a	perfect	conductor
(Figure	7.3).

Since	for	the	conductor	E2τ	=	H2τ	=	0,	 the	condition	E1τ	=	H1τ	=	0	has	to	be	satisfied.
The	value	E1τ	is	the	sum	of	electric	field	of	the	incident	and	reflected	waves:

E1τ=E1τi+E1τt=0. (7.27)

FIGURE	7.3	Orientation	of	 the	vectors	of	 electric	 and	magnetic	 fields	 for	 incident	 and
reflected	waves	in	the	case	of	normal	incidence	on	an	ideal	conductor.



From	 the	 last	 equation	 it	 follows	 that	E1τt=−E1τi.	Thus,	 the	 incident	wave	undergoes	a
total	 reflection,	 and	 a	 standing	 wave	 is	 formed	 in	 medium	 1	 in	 front	 of	 the	 interface
between	media	1	and	2	(consult	Section	4.7	about	the	standing	waves).	Vector	E	reverses
direction	without	changing	its	magnitude,	but	the	direction	of	the	vector	H,	according	to
the	right-hand	screw	rule,	remains	unchanged	and

H1τ=H1τi+H1τt=2H1τi≠0. (7.28)

This	creates	 the	appearance	of	a	violation	of	 the	boundary	conditions—continuity	of	 the
tangential	 component	 of	 the	magnetic	 field.	 However,	 in	 this	 case,	 when	we	 apply	 the
boundary	condition	for	the	magnetic	field,	it	is	necessary	to	take	into	account	the	density
of	surface	current	js.	This	current	flows	in	a	thin	near-surface	layer,	which	has	a	thickness
that	 tends	 to	zero	when	σ	→	∞.	Thus,	 for	an	 interface	between	a	dielectric	and	an	 ideal
conductor,	the	boundary	condition	for	the	magnetic	field	is	2H1τi=js.

Exercise	7.3
A	plane	electromagnetic	wave	is	incident	obliquely	on	the	surface	of	a	nonmagnetic	metal
(κm	=	1)	with	conductivity	σ	at	an	incidence	angle	θ0.	Find	the	power	losses	of	the	waves
with	p-	and	s-polarizations	on	a	unit	area	of	metal	surface	(power	density	losses).

Solution.	The	energy	of	the	wave	that	penetrates	into	the	metal	will	be	ultimately	turned
into	 heat.	 Therefore,	 we	 will	 determine	 the	 energy	 flux	 that	 penetrates	 into	 the	 metal.
According	 to	 the	 boundary	 conditions,	 the	 tangential	 components	 of	 the	 electric	 and
magnetic	fields	must	be	continuous	at	the	interface	of	the	two	media,	that	is,

E1τ=E2τ=Eτ,      H1τ=H2τ=Hτ.

If	at	the	metal	surface	the	wave	field	is	known,	then	to	find	the	power	losses	density,	it	is
necessary	 to	 calculate	 the	 average	 value	 of	 the	Poynting	 vector	 that	 is	 directed	 into	 the
metal:

S=12Re(Eτ×Hτ*).

Here,	 the	tangential	components	Eτ	and	Hτ	at	 the	surface	of	 the	conductive	medium	are
related	by	the	Leontovich	boundary	condition:

Eτ=Zm(Hτ×n0),

where	n0	is	the	unit	vector	of	the	normal	to	the	metal	surface	that	is	directed	inside	of	the
metal	(see	Figure	7.2)	and

Zm=κmμ0κ˜ε0=−ωκmμ0iσ=(1+i)ωκmμ02σ

is	the	metal	impedance	where	we	took	into	account	that	the	complex	conductivity	of	the
metal	is	given	by	κ˜=−iσ/ε0ω,  κm=1	(see	Equation	7.17),	and

−1i=i=(eiπ/2)1/2=eiπ/4=cosπ4+i⋅sinπ4=1+i2.
Let	us	substitute	these	relationships	into	the	expression	for	the	Poynting	vector:

S=12Re[	Zm(Hτ×n0)×Hτ*	]=12|	Hτ	|2Re(Zm)n0,

where	the	real	part	of	impedance	is	equal	to	Re(Zm)=ωκmμ0/2σ.	Thus,	for	the	power	loss



density,	we	get

PA=12|	Hτ	|2Re(Zm)=12|	Hτ	|2ωκmμ02σ=|	Hτ	|2ωκmμ08σ.

Since	at	the	interface	the	tangential	components	of	the	field	vectors	are	continuous,	then

PA=|	H0	|2ωκmμ08σ

in	 the	 case	 of	 an	 incident	 wave	 with	 p-polarization	 (vector	 H0	 is	 perpendicular	 to
incidence	plane)	and

PA=|	H0	|2ωκmμ08σcos2 θ0

in	 the	 case	 of	 an	 incident	 wave	 with	 s-polarization	 (vector	 H0	 lies	 in	 the	 plane	 of
incidence).

7.4				SURFACE	WAVES	AT	THE	INTERFACE	BETWEEN
A	DIELECTRIC	AND	A	CONDUCTOR

1.	Surface	waves	propagate	along	the	interface	between	two	different	media.	Their	fields
are	localized	near	the	interface	and	decrease	in	the	direction	perpendicular	to	the	interface.
A	surface	wave	is	a	particular	solution	of	Maxwell’s	equations,	which	was	first	obtained
by	Sommerfeld	early	 in	 the	 twentieth	century.	We	assume	that	 the	plane	z	=	0	separates
two	semi-infinite	media	with	dielectric	permittivities	κ1	(half-space	1,	z	<	0)	and	κ2	(half-
space	2,	z	>	0).	We	assume	that	 these	media	are	nonmagnetic	(κm1	=	κm2	=	1).	For	each
medium,	one	can	write	Maxwell’s	equations	for	the	wave	field	vectors:

∇×Ej=−iωμ0Hj,∇×Hj=iωκjε0Ej, (7.29)

where	j	=	1,	2	is	the	index	of	the	corresponding	half-space.	As	we	already	demonstrated,
by	applying	∇	×	operation	to	Equations	7.29,	these	equations	are	reduced	to	the	following
Helmholtz	equations:

∇2Ej+k02κjEj=0,∇2Hj+k02κjHj=0, (7.30)

where	k0	=	ω/c	is	the	wave	number	in	a	vacuum.

We	search	for	solutions	of	Equations	7.30	in	the	form	of	a	surface	waves	traveling	along
the	x-axis.	Let	us	write	this	solution	for	the	tangential	components	of	the	magnetic	field

Hjy(x,z,t)=Hjy(z)⋅ei(ωt−kx), (7.31)

where	k	is	the	wave	number,	the	same	in	both	regions	1	and	2.	Substituting	Equation	7.31
into	the	second	Equation	7.30,	we	obtain

∂2Hjy∂z2−gj2Hjy=0, (7.32)

where	we	have	introduced	the	transverse	wave	vector	components	(along	the	normal	to	the
interface)	in	each	of	the	two	media:



gj2=k2−κjk02. (7.33)

The	solutions	of	Equation	7.32	have	the	form

{	H1y=U1eg1z⋅ei(ωt−kx),z<0,H2y=U2e−g2z⋅ei(ωt−kx),z>0, (7.34)

where	U1,2	 are	 the	 constants.	As	 energy	of	 the	wave	 is	 limited,	 the	wave	 fields	 in	 both
nonamplifying	 media	 have	 to	 decrease	 exponentially	 when	 we	 move	 away	 from	 the
interface.	 Therefore,	 in	 Equations	 7.34,	 the	 values	 g1,2,	 which	 have	 the	 meaning	 of
damping	constants,	have	to	be	positive.

Writing	down	the	equations	of	system	(7.29),	it	is	easy	to	show	that	the	system	has	two
independent	 solutions,	 which	 correspond	 to	 two	 waves	 with	 different	 orthogonal
polarizations.

The	first	solution	determines	 the	relation	of	 transverse	magnetic	 (TM)	wave	with	 the
components	of	a	vector	field	Ex,	Hy,	Ez,	and	the	second	solution	determines	the	transverse
electric	(TE)	wave	with	the	components	Hx,	Ey,	Hz.

First,	we	consider	the	solution	in	the	form	of	a	TM	wave.	At	the	interface	(z	=	0),	the
following	 boundary	 conditions	 have	 to	 be	 satisfied:	 (1)	 the	 continuity	 of	 the	 tangential
components	 of	 the	 electric	 and	 magnetic	 fields	 and	 (2)	 the	 continuity	 of	 the	 normal
components	of	the	dielectric	displacements:

H1y=H2y,   E1x=E2x,    κ1E1z=κ2E2z.

It	follows	from	these	relations	that	the	magnetic	field	vector	at	the	interface	is	the	same	in
both	media.	To	express	values	Ex,	Ez	through	a	magnetic	field	Hy,	we	will	write	down	the
second	equation	of	system	(7.29)	in	projections	on	the	x-	and	z-axes	 taking	 into	account
that	the	fields	do	not	depend	on	y-coordinate:

−∂Hjy∂z=iωκjε0Ejx,    ∂Hjy∂x=iωκjε0Ejz. (7.35)

Using	Equation	7.34	and	calculating	the	derivatives	of	Hjy,	we	obtain

Ejx=±igjωκjε0Hjy,    Ejz=−kωκjε0Hjy, (7.36)

where	 the	 signs	 “+”	 and	 “–”	 in	 the	 expression	 for	 Ejx	 correspond	 to	 media	 1	 and	 2,
respectively.	The	field	vectors	of	the	surface	wave	are	shown	in	Figure	7.4.

Taking	into	account	Equations	7.36	and	the	relation	H1y	=	H2y,	we	see	that	the	boundary
condition	E1x	=	E2x	is	satisfied	only	when

g1g2=−κ1κ2, (7.37)

from	where,	taking	into	account	that	g1	>	0	and	g2	>	0,	 it	 follows	that	 the	surface	wave
can	propagate	 only	 along	 the	 interface	 between	media	with	 dielectric	 permittivities	 of
different	signs.	 If	κ1 > 0, then κ2 = −|	κ2	 | < 0	(in	 the	case	of	a	complex	permittivity,	 this



condition	 concerns	 to	 its	 real	 part).	The	medium	with	 negative	 dielectric	 permittivity	 is
called	surface	active.

Substituting	expressions	(7.33)	for	the	damping	constants	into	Equation	7.37,	we	obtain
the	following	expression	for	the	wave	number:

k=k0κ1|	κ2	||	κ2	|−κ1=k0κ1κ2κ2+κ1, (7.38)

which	is	a	dispersion	relation	for	waves	of	this	type,	since	it	determines	the	dependence	of
the	wave	number	k	 on	 the	angular	 frequency	ω	 (on	 the	 right	 side	of	Equation	7.38,	 not
only	k0	but	generally	κ1	and	κ2	are	functions	of	frequency).

From	Equation	7.38,	 it	 follows	 that	 for	 the	wave	number	k	 to	 be	 real,	 the	 expression
under	the	square	root	should	be	positive,	 that	 is,	 the	surface	wave	will	propagate	only	if
condition	|	κ2	| > κ1	is	satisfied.

For	 the	 surface	 TE	wave	 (with	 components	 of	 fields	Ey,	 Hx,	 and	Hz),	 the	 dispersion
relation	has	the	following	form,	which	is	analogous	to	Equation	7.37:

g1g2=−κm1κm2. (7.39)

With	positive	values	of	g1	and	g2,	this	condition	can	be	satisfied	only	in	the	case	when	the
magnetic	permeabilities	of	the	adjacent	media,	κm1	and	κm2,	have	different	signs.	Thus,	at
the	boundary	between	two	nonmagnetic	dielectrics,	the	surface	wave	can	only	be	of	TM
type.

2.	Surface	waves	can	be	excited	at	the	interface	of	two	dielectrics	at	frequencies	that	for
one	 of	 the	 two	 media	 correspond	 to	 a	 range	 of	 anomalous	 dispersion	 (near	 a	 line	 of
resonance	absorption).	Also,	 the	surface	waves	can	be	excited	at	 the	boundary	of	media
that	 have	 high	 conductivity—for	 example,	metals	 and	 semiconductors.	 In	 this	 case,	 the
negative	 sign	 of	 the	 value	 κ′	 =	Reκ	 is	 due	 to	 the	 dominant	 contribution	 to	 the	material
polarizability	of	the	electron	gas.	The	free	electrons	move	in	such	a	way	that	they	generate
a	 field	 opposite	 to	 the	 external	 electric	 field.	 Therefore,	 electrons	 partially	 screen	 the
external	field,	and	the	latter	penetrates	into	the	conductor	to	a	depth	that	 is	considerably
smaller	 than	 the	 wavelength.	 However,	 at	 sufficiently	 high	 frequencies,	 the	 electrons
cannot	 respond	 to	 the	 rapidly	 changing	 external	 electric	 field,	 and	 the	 metal	 becomes
transparent.	 The	 characteristic	 frequency	 at	 which	 this	 occurs	 is	 called	 the	 plasma
frequency.

FIGURE	7.4	Orientation	of	the	electric	and	magnetic	field	vectors	for	a	TM	surface	wave
at	the	interface	of	two	media.

The	simplest	equation	that	describes	the	dispersion	properties	of	the	metal,	that	is,	the
function	κ(ω),	is	known	as	the	Drude	formula:



κ(ω)=1−ωp2ω(ω+iγ), (7.40)

where

ωp	is	the	plasma	frequency
γ	is	the	frequency	of	electron	collisions

For	metals,	in	the	optical	frequency	range	(ω~1015S−1), ωp~1016S−1, γ~1013−1014S−1,
that	is,	γ	<	ω	<	ωp.	In	particular	for	an	air-metal	interface	(κ1=1, κ′2≃1−ωp2/ω2,  and γ=0)
from	Equation	7.38,	we	obtain

k≃k01−ω2/ωp21−2ω2/ωp2,
and	taking	into	account	that	ω	≪	ωp,	this	equation	is	simplified	to

k≃k0(1+ω22ωp2). (7.41)

Figure	7.5	shows	the	dispersion	curve	ω(k)	for	surface	waves	described	by	Equations	7.38
and	7.41	(curve	1).	For	comparison,	 the	dependence	ω	=	ck	 for	a	vacuum	is	also	shown
(curve	2).

It	is	seen	that	the	deviation	of	curve	2	from	curve	1	increases	with	frequency,	indicating
a	decrease	in	both	the	phase	and	group	velocity	of	the	surface	wave	compared	with	these
parameters	of	a	wave	in	a	vacuum.	Curve	3	represents	the	solution	of	dispersion	equation
ω2=ωp2+c2k2	for	volume	waves	that	can	propagate	in	the	metal	in	the	transparency	range
ω	>	ωp,	and	for	large	k	as	ck	becomes	substantially	larger	than	ωp,	the	ω(k)	line	tends	to	ck
(line	2).

FIGURE	 7.5	 Dependences	 ω	 versus	 k	 for	 the	 surface	 (curve	 1)	 and	 volume	 (curve	 3)
waves;	curve	2	shows	ω	(k)	for	the	case	of	the	vacuum.

Because	of	the	difference	between	the	phase	velocities	in	vacuum	and	other	media,	the
surface	wave	cannot	be	excited	by	a	wave	incident	from	a	vacuum.	There	are	two	effective
methods	of	the	excitation	of	surface	waves:	(1)	using	a	prism	and	(2)	using	a	grating.	The
prism	 method,	 also	 known	 as	 the	method	 of	 broken	 total	 internal	 reflection,	 can	 be
realized	 in	 two	 geometries:	 Otto’s	 geometry	 and	 Kretschmann’s	 geometry	 (Figure	 7.6a
and	b).

In	Otto’s	geometry,	a	light	wave	before	entering	medium	1	with	a	dielectric	permittivity
κ1	falls	on	the	prism	that	has	a	dielectric	permittivity	κp	>	κ1.	For	an	angle	of	incidence	θ,
greater	 than	 the	critical	angle	 for	 total	 internal	 reflection,	a	slow	wave	propagates	along



the	interface	between	media	3	and	1.	Its	phase	velocity	is	less	than	that	of	the	waves	in	an
infinite	 medium.	 For	 sufficiently	 small	 thickness	 of	 the	 gap	 d	 (of	 the	 order	 of	 the
wavelength),	between	the	prism	and	the	surface-active	medium	2	with	a	dielectric	constant
κ2,	 the	 interface	between	media	1	and	2	also	participates	 in	 the	wave	process.	A	surface
wave	travels	along	interfaces	1	and	2	and	its	phase	velocity	is	matching	the	phase	velocity
of	the	slow	wave	at	the	interface	between	media	1	and	3.

Since	Snell’s	law	and	the	dispersion	relation	(7.38)	are	symmetric	relative	to	κ1	and	κ2,
it	is	possible	to	change	the	arrangement	and	get	Kretschmann’s	geometry	(Figure	7.6b).	In
this	case,	the	thin	film	2	is	placed	on	the	bottom	face	of	a	prism,	and	the	film	is	serving	as
the	 active	 medium.	 Because	 of	 the	 strong	 absorption	 in	 the	 active	 medium,	 the	 film
thickness	has	to	be	rather	small	so	that	most	of	the	wave	energy	reaches	interfaces	1–2.

Excitation	 of	 surface	 electromagnetic	waves	 can	 also	 be	 carried	 out	 by	means	 of	 the
diffraction	 grating,	 which	 is	 placed	 on	 the	 surface-active	 medium	 and	 which	 diffracts
radiation	under	particular	angles.

Exercise	7.4
Find	the	relationship	between	the	material	parameters	of	the	transverse	components	of	the
wave	 number	 of	 a	 surface	wave	 at	 the	 interface	 between	 a	 transparent	 dielectric	 and	 a
metal.	Find	the	frequency	range	for	which	a	surface	wave	exists.	The	electric	permittivity
κ1	of	the	dielectric	is	positive,	and	the	electric	permittivity	κ2(ω)	of	the	metal	is	described
by	the	Drude	model	without	taking	into	account	losses.

Solution.	The	transverse	components	of	the	wave	vector	k	of	the	surface	wave	are	given
by	the	following	expressions:

g12=k2−k02κ1,     g22=k2−k02κ2.

The	relationship	of	the	wave	number	with	the	material	parameters	can	be	written	as

k2=k02κ1κ2κ2+κ1,

FIGURE	7.6	Schematic	of	the	excitation	of	surface	waves	in	geometries	by	Otto	(a)	and
Kretschmann	(b).

where	k0	=	ω/c.	For	a	metal	κ2(ω)	=	1	–	 (ωp/ω)2,	where	ωp	 is	 the	 plasma	 frequency.	 In
order	for	a	surface	wave	to	exist,	the	condition	κ2(ω)	<	0	must	be	satisfied,	which	is	valid
only	in	the	frequency	range	ω	<	ωp.	Let	us	find	out	if	a	surface	wave	exists	in	the	entire
region	or	only	in	a	part	of	it.	To	answer	this	question,	let	us	substitute	the	expression	for	k2
into	the	expressions	for	g1,22:

g12(ω)=−k02κ12κ2(ω)+κ1,    g22(ω)=−k02κ22(ω)κ2(ω)+κ1.



According	to	the	equation	for	surface	wave	(7.34),	in	order	for	this	wave	to	exist,	both	g1
and	g2	must	 be	 real.	 Therefore,	 the	 following	 inequalities	must	 take	 place:	 g12 > 0 and 
g22 > 0.	Thus,	κ2+κ1<0 or κ2<−κ1.	Taking	into	account	the	dependence	κ2(ω),	we	get

1−ωp2ω2<−κ1,     ωp2ω2>1+κ1,    ω<ωp1+κ1,

that	is,	the	frequency	range	where	a	surface	wave	exists	narrows	down	with	the	increase	of
the	κ1.	If	the	first	medium	is	a	vacuum,	then	the	frequency	range	is	given	by	the	inequality
ω<ωp/2.

7.5				SUPERCONDUCTIVITY
In	1911,	the	Dutch	scientist	Kamerlingh	Onnes	discovered	that	at	a	temperature	of	4.15	K
the	electrical	resistance	of	mercury	abruptly	decreases	to	zero.	Further	studies	have	shown
that	many	other	metals	and	alloys	behave	in	a	similar	way.	This	phenomenon	was	called
superconductivity,	 and	 the	 materials	 that	 exhibit	 it	 are	 called	 superconductors.	 The
temperature	Tc,	at	which	there	is	an	abrupt	transition	to	the	superconducting	state,	is	called
the	critical	 temperature.	The	 state	of	 a	 superconductor	 above	 the	critical	 temperature	 is
called	normal	and	below	superconducting.

1.	A	theory	for	superconductivity	that	is	known	as	the	BCS	theory	was	proposed	in	1957
by	 Bardeen,	 Cooper,	 and	 Schrieffer.	 This	 theory	 of	 superconductivity	 is	 complicated
because	superconductivity	is	a	macroscopic	quantum	effect.	We	will	limit	our	discussion
to	a	simplified	presentation	of	the	basic	concepts	of	the	BCS	theory.

The	free	electrons	 in	a	metal,	 in	addition	 to	 the	Coulomb	repulsion	among	them,	also
experience	a	 special	 type	of	 attraction,	which	 in	 the	 superconducting	 state	prevails	over
the	electron–electron	Coulomb	repulsion.	As	a	result,	the	conduction	electrons	form	what
is	known	as	the	Cooper	pairs.	The	electrons	in	each	pair	have	oppositely	directed	spins.
Therefore,	 the	 spin	 of	 the	 pair	 is	 equal	 to	 zero,	 and	 therefore,	 the	 pair	 is	 a	 boson—a
particle	with	an	integer	spin.	According	to	quantum	statistics,	bosons	tend	to	accumulate
in	their	ground	energy	state,	from	which	it	is	relatively	difficult	to	make	a	transition	to	an
excited	 state.	 In	 other	 words,	 below	 the	 critical	 temperature	 Tc,	Bose	 condensation	 of
Cooper	pairs	of	electrons	takes	place.	Cooper	pairs	of	a	Bose	condensation	in	the	ground
state	 can	 exist	 indefinitely	 long.	 Cooper	 pairs	 move	 coherently	 and	 form	 the
superconducting	current.

In	 the	 following,	we	discuss	 the	Cooper	pair	 formation	 in	 a	 little	bit	more	detail.	An
electron	moving	in	a	metal	polarizes	the	crystal	lattice	that	consists	of	positive	ions.	As	a
result	of	this	polarization,	the	electron	appears	to	be	surrounded	by	a	“cloud”	of	positive
charge	moving	 through	 the	 lattice	 together	with	 the	electron.	The	electron	 together	with
the	 surrounding	 cloud	 forms	 a	 positively	 charged	 system,	 which	 will	 attract	 another
electron.	Thus,	the	crystal	lattice	plays	the	role	of	the	intermediate	medium,	the	presence
of	which	causes	the	attraction	between	the	two	electrons.

Using	the	language	of	quantum	mechanics,	the	attraction	between	electrons	is	explained
as	a	result	of	the	exchange	between	electrons	by	quanta	of	the	lattice	vibrations	known	as
phonons.	 An	 electron	 moving	 in	 a	 metal	 excites	 phonons.	 This	 excitation	 energy	 is
transferred	 to	another	electron	 that	absorbs	 the	phonon.	As	a	 result	of	 such	exchange	of



phonons,	 there	 is	an	additional	 interaction	between	electrons,	which	has	 the	character	of
attraction.	 At	 low	 temperatures,	 this	 attraction	 for	 materials	 that	 are	 superconductors
exceeds	the	Coulomb	repulsion.	This	interaction	is	pronounced	most	strongly	for	electrons
with	opposite	momenta	and	spins.	As	a	result,	two	such	electrons	are	coupled	and	form	a
Cooper	 pair.	This	 pair	 should	 not	 be	 imagined	 as	 two	 electrons	 joined	 together.	On	 the
contrary,	the	distance	between	the	electrons	of	a	pair	is	very	large;	it	is	about	10−4	cm,	that
is,	it	exceeds	the	interatomic	distances	in	a	crystal	by	four	orders	of	magnitude.

Not	all	conduction	electrons	 form	Cooper	pairs.	At	a	 temperature	Tc,	other	 than	zero,
there	 is	 a	 probability	 that	 a	 pair	will	 be	 destroyed.	 Therefore,	 at	 temperature	 below	Tc,
along	with	 the	pairs,	 there	are	always	 the	normal	 electrons	moving	 in	 the	 crystal	 in	 the
usual	way.	The	closer	T	is	to	Tc,	the	higher	is	the	percentage	of	normal	electrons,	and	at	T
=	 Tc	 all	 electrons	 become	 normal.	 Consequently,	 at	 a	 temperature	 above	 Tc,	 the
superconducting	 state	 does	 not	 exist.	 The	 formation	 of	 Cooper	 pairs	 leads	 to	 a
restructuring	of	the	electron	energy	spectrum	in	the	metal.	The	excitation	of	the	electrons
in	a	superconductor	 requires	 the	distraction	of	at	 least	one	pair.	So,	 to	destroy	a	Cooper
pair,	 the	 energy	 equal	 to	 the	 Cooper	 pair	 binding	 energy	W0	 is	 needed.	 This	 energy
represents	the	minimum	amount	of	energy	that	the	system	of	electrons	of	a	superconductor
can	 absorb.	 If	 the	 current	 through	 the	 superconductor	 is	 low,	 the	 electron	 velocities	 are
small	 and	 the	energy	 that	 a	Cooper	pairs	 are	getting	 from	 the	current	 is	below	W0.	The
electronic	 system	will	 not	 be	 excited,	 and	 this	means	 electron	moves	without	 electrical
resistance.	 If	 current	 increases	 above	 the	 so-called	 critical	 current	 Ic	 or	 the	 temperature
increases	 above	Tc,	 the	 material	 returns	 to	 its	 normal	 (non	 superconducting,	 but	 rather
metallic)	state.

2.	 The	 magnetic	 field	 does	 not	 penetrate	 into	 an	 interior	 of	 the	 superconductor	 (this
phenomenon	 is	 called	 the	Meissner	 effect).	 If	 a	 superconducting	 sample	 is	 cooled	 in	 a
magnetic	 field,	 at	 the	 time	 of	 the	 transition	 to	 the	 superconducting	 state,	 the	 field	 is
expelled	 from	 the	 sample,	 that	 is,	 the	 magnetic	 field	 B	 in	 the	 material	 vanishes.	 It	 is
formally	 possible	 to	 consider	 that	 the	 superconductor	 possesses	 zero	 magnetic
permeability	(κm	=	0,	and	B	=	κmH	=	0).

Since	 in	 the	 superconductor	 there	 is	 no	 magnetic	 field	 inside	 the	 superconductor,
electric	 currents	 cannot	 flow	 in	 its	 volume,	 that	 is,	 j	 =	 0	 inside	 the	 bulk	 of	 the
superconductor.	 From	 Ampere’s	 law	 (∇×H=js),	 it	 follows	 that	 all	 currents	 in	 the
superconductor	 have	 to	 flow	on	 its	 surface.	These	 surface	 currents	 generate	 a	magnetic
field	that	cancels	the	externally	applied	field	inside	the	superconductor.	The	expulsion	of
the	magnetic	field	from	a	superconductor	is	referred	to	as	the	Meissner	effect.

A	 sufficiently	 strong	 external	magnetic	 field	 destroys	 the	 superconducting	 state.	 The
value	of	magnetic	field	at	which	this	occurs	is	called	the	critical	field	and	is	denoted	as	Bc.
Its	 value	 depends	 on	 a	 sample	 temperature.	 The	 condition	 Bc	 =	 0	 corresponds	 to	 the
critical	 temperature	Tc.	When	 the	 temperature	 decreases,	 the	 value	 of	Bc	 increases	 and
approaches	 the	 value	 of	 the	 critical	 field	 Bc0	 at	 zero	 temperature.	 A	 sketch	 of	 the
dependence	of	Bc	on	T	is	shown	in	Figure	7.7.	If	we	increase	the	current	flowing	through	a
superconductor	 to	a	value	above	Ic,	 the	superconducting	state	is	destroyed.	This	value	is



called	the	critical	current.	Ic	depends	on	temperature.	The	dependence	of	Ic	on	T	is	similar
to	the	dependence	of	Bc	on	T.

FIGURE	7.7	Phase	diagram	of	critical	field–critical	temperature	that	shows	the	regions
of	normal	and	superconducting	states.

3.	 In	 1935,	 brothers	 F.	 London	 and	H.	 London	 proposed	 two	 equations	 to	 describe	 the
electrodynamics	of	superconductors:

E=ddt(Λj),    μ0H=−∇×(Λj), (7.42)

The	 first	 equation	 of	 system	 (7.42)	 is	 easily	 obtained	 from	 Newton’s	 second	 law	 after
multiplying	it	by	ens:

mdvsdt=eE,   mddt(ensvs)=e2nsE,   ddt(Λj)=E, (7.43)

where

m	is	the	electron	mass
ns	and	vs	are	the	density	and	velocity	of	superconducting	electrons
Λ	=	m/e2ns	is	the	parameter	considered

Here,	it	is	assumed	that	the	density	of	superconducting	electrons	ns	is	small	at	T	=	Tc	and
ns	=	n	at	T	≪	Tc.

The	second	equation	of	system	(7.42)	can	be	derived	from	the	first	equation,	by	taking
the	“curl”	from	both	of	its	parts	and	using	one	of	Maxwell’s	equations,	∇×E=−(∂B/∂t):

∇×E=∇×∂∂t(Λj),    −∂B∂t=∂∂t∇×(Λj),∂∂t(μ0H+∇×(Λj))=0,     μ0H+∇×(Λj)=0. (7.44)

If	we	take	curl	from	both	sides	of	Ampere’s	law	∇×H=j,	written	for	a	static	field,	and	take
into	 account	 the	 curl	 of	 curl	 vector	 identity	 ∇×(∇×H)=∇(∇⋅H)−∇2H,	 then	 after
substitution	of	∇×j	from	the	second	London	equation,	we	get

∇×(∇×H)=∇×j,     −∇2H=∇×j−∇2H=−μ0ΛH,   ∇2H−(1δ2)H=0,    
δ2=Λμ0=mμ0e2ns,H(z)=H(0)exp(−zδ). (7.45)

From	 the	 last	 equation,	 it	 follows	 that	 the	 static	 magnetic	 field	 penetrates	 inside	 the
superconductor	to	a	depth	δ=m/μ0e2ns.	Thus,	the	London	equations	(7.42)	are	compatible



with	the	Meissner	effect.

Exercise	7.5
Find	 the	 complex	 conductivity	 of	 a	 superconductor	 in	 the	 field	 of	 a	 monochromatic
electromagnetic	wave.

Solution.	The	equation	of	motion	for	superconducting	electrons	is	determined	by	the	first
of	the	London	equations	(7.42):

E=Λdjsdt,

where

Λ=m/e2ns	is	the	parameter	considered
ns	is	the	concentration	of	superconducting	electrons

In	 the	 electric	 field	 E~exp(iωt)	 of	 the	 electromagnetic	 wave,	 the	 current	 js	 is	 also
monochromatic,	js~exp(iωt),	and	from	the	equation	given	earlier,	we	get

js=−iΛωE.

For	 normal	 electrons	 with	 concentration	 nn,	 the	 equation	 of	 motion	 after	 taking	 into
account	the	electric	field	force	and	the	average	friction-like	force	will	have	the	following
form:

mdvndt=eE−mvnτ,    or    mnnedjndt=eE−mnnejnτ,

where	we	 took	 into	 account	 that	 jn	 =	nnevn.	 Let	 us	 introduce	 into	 the	 last	 equation	 the
parameter	Λ	and	rewrite	as

E=Λnsnndjndt+Λnsnnjnτ.

In	 the	 field	 of	 a	 monochromatic	 wave,	 the	 current	 of	 normal	 electrons	 is	 equal	 to
jn~exp(iωt).	Therefore,

js=−iΛωE,    jn=nnnsτΛ1−iωτ1+(ωτ)2E.

The	total	current	density	is	equal	to	j	=	js	+	jn,	and	therefore,

j=σE,     σ=σ′−iσ″,

where	 the	 real	 and	 imaginary	 parts	 of	 the	 complex	 conductivity	 of	 high-frequency
superconductor	are	given	by	the	relationships

σ′=nnnsτΛ11+(ωτ)2,        σ″=1Λω(1+nnns(ωτ)21+(ωτ)2).

7.6				QUANTUM	EFFECTS	IN	SUPERCONDUCTIVITY
1.	Here,	we	will	give	a	very	short	introduction	of	certain	phenomena	that	are	characteristic
for	superconductors,	but	we	will	not	go	into	detailed	explanations	as	these	phenomena	are
quantum	mechanical	in	nature.	Consider	a	superconducting	ring	that	carries	a	circulating
superconducting	 current.	 Assume	 that	 the	 electrons	 move	 in	 a	 circle	 of	 radius	 r	 with
velocity	v	(see	Figure	7.8).	The	current	energy	is	represented	by	the	expression	W=IΦ/2,
where	I	 is	 the	current	 intensity	and	Φ	the	magnetic	flux	through	the	circle,	generated	by
this	 current.	 If	 N	 is	 the	 total	 number	 of	 electrons	 in	 the	 ring	 and	 T	 is	 the	 period	 of



revolution,	 then	 I=Ne/T=Nev/2πr.	 Thus,	 W=NevΦ/4πr.	 On	 the	 other	 hand,	 the	 same
energy	is	equal	to	W	=	Nmv2/2.	Equating	both	expressions,	we	will	obtain	Φ=2πrmv/e.	If
electrons	are	moving	as	Cooper	pairs,	the	momentum	of	each	pair	is	p	=	2mv,	so	Φ=πrp/e.

The	 momentum	 of	 Cooper	 pairs	 can	 only	 take	 quantized	 values	 according	 to	 the
relationship	 pr=nℏ,	 where	 n	 is	 an	 integral	 number	 and	 ℏ=h/2π	 is	 a	 reduced	 Planck
constant	and	h	is	a	Planck	constant.	Consequently,

Φ=Φ0n,     n=0,1,2,…. (7.46)

This	formula	expresses	the	quantization	of	the	magnetic	flux	in	superconductors,	and	the
quantum	of	the	magnetic	flux	is	given	by	the	expression

Φ0=πℏe=2.07×10−15Js/C. (7.47)

The	 formula	 of	 this	 type	 was	 obtained	 by	 F.	 London	 before	 BCS	 theory	 of
superconductivity.	However,	F.	London	obtained	a	value	for	Φ0,	which	is	twice	as	large	as
the	 value	 given	 by	 Equation	 7.48.	 This	 originates	 from	 the	 fact	 that	 at	 that	 time	 the
phenomenon	 of	 electron	 pairing	 was	 not	 yet	 known.	 Therefore,	 for	 the	 electron
momentum,	London	used	the	expression	p	=	mv	instead	of	the	expression	p	=	2mv,	as	it
should	be	for	Cooper	pairs.	Experiment	has	shown	the	correctness	of	Equations	7.47	and
7.48	and	by	that	confirmed	the	existence	of	the	electron	Cooper	pairs.

It	 is	known	 that	a	persistent	electric	current	can	be	excited	 in	a	superconductive	 ring.
For	example,	one	such	experiment	lasted	for	2.5	years,	yet	no	current	decay	was	observed.
At	 first	 glance,	 there	 is	 nothing	 surprising	 because	 no	 Joule	 heat	 is	 produced	 in	 a
superconductor,	 and	 therefore,	 there	 is	 no	 current	 decay.	 The	 real	 situation	 is	 more
complicated	 as	 the	 electrons	 in	 a	 superconducting	 ring	 are	 moving	 with	 a	 centripetal
acceleration	and	 therefore	according	 to	Maxwell’s	 equations	must	 radiate,	which	 should
lead	 to	 energy	 loss	 and	 thus	 current	decay.	Experiment	 shows,	however,	 that	no	current
decay	 is	 observed.	 This	 apparent	 contradiction	 is	 eliminated	 in	 the	 same	way	 as	 in	 the
elimination	 of	 contradiction	 for	 the	 radiation	 in	 the	 Bohr	 model	 of	 a	 hydrogen	 atom.
Because	there	was	no	radiation,	Bohr	introduced	the	quantum	postulate	of	stationary	states
of	an	atom	and	de	Broglie	explained	that	by	the	formation	of	a	circular	standing	wave	for
each	atomic	orbit	(de	Broglie	wave).	In	a	similar	fashion,	 in	a	superconducting	ring	that
carries	 a	 current,	 radiation	 does	 not	 appear	 because	 of	 the	 quantization	 of	 the	 electric
current.	This	 quantization	 is	 observed	 already	 at	 the	macroscopic	 scale,	 as	 a	 de	Broglie
standing	wave	is	formed	in	a	current-carrying	ring	of	macroscopic	size.



FIGURE	7.8	Quantization	of	the	magnetic	flux	of	circular	superconducting	current.

2.	On	 the	 basis	 of	 the	 theory	 of	 superconductivity,	B.	 Josephson	 in	 1962	predicted	 two
surprising	 effects	 that	 were	 later	 found	 subsequently	 when	 a	 superconducting	 current
tunnels	 through	 a	 thin	 dielectric	 layer	 separating	 two	 superconductors.	 In	 a	 so-called
Josephson	 junction,	 conduction	 electrons	 pass	 through	 the	 insulator	 (e.g.,	 metal	 oxide
film	with	a	 thickness	of	about	1	nm)	due	 to	 the	 tunneling	effect	 (see	Figure	7.9).	 If	 the
current	through	a	Josephson	junction	does	not	exceed	a	certain	critical	value,	there	is	no
voltage	 drop	 across	 the	 junction.	 This	 first	 phenomenon	 is	 the	 so-called	 stationary
Josephson	effect.	On	the	other	hand,	if	the	current	through	a	Josephson	junction	exceeds	a
critical	 value,	 a	 voltage	 drop	 U	 appears	 across	 the	 junction	 and	 the	 junction	 radiates
electromagnetic	 waves.	 This	 second	 phenomenon	 is	 the	 so-called	 nonstationary
Josephson	effect.

The	radiation	angular	frequency	ω	is	related	to	the	voltage	drop	U	at	the	junction	by	the
relation	ω=2eU/ℏ	(here	e	is	the	electron	charge).	The	emission	of	radiation	is	explained	by
the	 fact	 that	 the	 Cooper	 pairs,	 which	 participate	 in	 the	 superconducting	 current,	 while
passing	through	the	junction	obtain	an	excess	energy	relatively	to	the	ground	state	of	the
superconductor.	 When	 they	 return	 to	 the	 ground	 state,	 they	 emit	 a	 quantum	 of
electromagnetic	energy	ℏω=2eU.	The	Josephson	effect	is	used	for	precise	measurements
of	 very	 weak	 magnetic	 fields	 (as	 low	 as	 10−15	 T),	 currents	 (as	 low	 as	 10−10	 A),	 and
voltages	(as	low	as	10−15	V).	Josephson	junctions	are	used	as	functional	elements	for	rapid
logic	devices	and	amplifiers.

For	 longer	periods,	 the	superconducting	state	of	various	metals	and	compounds	could
be	obtained	only	at	very	low	temperatures	achievable	by	using	liquid	helium	(with	boiling
point	at	4.2	K)	as	a	coolant.	Since	the	beginning	of	1986,	the	observed	maximum	value	of
critical	 temperature	 in	 superconductors	 was	 23	 K.	 In	 1986–1987,	 a	 number	 of	 high-
temperature	 superconductors	 (HTSs)	with	 critical	 temperature	 about	 100	K	were	 found.
This	temperature	is	achieved	using	liquid	nitrogen	as	a	coolant.	Unlike	helium	liquid	that
is	 expensive,	 liquid	 nitrogen	 is	 produced	 inexpensively	 on	 an	 industrial	 scale.	This	 fact
considerably	 expands	 the	 area	 of	 potential	 practical	 applications	 of	 superconductors.
Intensive	 research	 in	 the	 field	of	 superconductivity	began	with	 the	discovery	of	HTS	 in
systems	such	as	La–Su–O	(with	Tc	=	35	K)	and	La–Va–Su–O	(with	Tc	=	92	K).	Critical
temperatures	110	K	 in	 the	 system	Bi–Sr–Sa–Su–O	and	125	K	 in	TI–Sa–Va–Su–O	were
achieved.	 HTSs	 have	 rather	 high	 upper	 critical	 fields	 (Bc2	 ≪	 100	 –	 200	 T),	 which
corresponds	 to	 their	 complete	 transition	 to	 the	normal	 state.	However,	 the	 lower	critical



fields	corresponding	 to	 the	beginning	of	 the	 transition	from	the	superconducting	state	 to
the	normal	state	are	small	(Bc1	≪	10−2	T).

In	 the	 present,	 low	 values	 of	 the	 lower	 critical	 field	Bc1	 and	 low	 critical	 currents	 of
superconductors	 restrict	 their	 practical	 application	 (e.g.,	 in	 electric	 power	 transmission).
Currently,	research	is	carried	out	 to	 find	new	materials,	which	simultaneously	have	high
values	of	all	critical	parameters—Tc,	Bc,	and	jc.	In	addition,	active	search	is	carried	out	on
HTSs	with	ambient	critical	temperature	(about	300	K).	Any	such	discovery	will	produce	a
genuine	 technological	 revolution	 (e.g.,	 the	 use	 of	 superconducting	 power	 lines	 will
completely	eliminate	the	power	losses	in	transmission	wires).

FIGURE	7.9	Josephson	junction.

Exercise	7.6
In	 a	 bulk	 superconductor,	 there	 exists	 a	 hole	 of	 radius	 r	 =	 100	 μm	 and	 n	 =	 10	 is	 the
number	 of	 magnetic	 flux	 quanta	 that	 are	 captured	 in	 it.	 Determine	 the	 strength	 of	 the
magnetic	field	in	the	hole.

Solution.	Since	the	magnetic	flux	that	is	trapped	by	the	hole	consists	of	n	magnetic	 flux
quanta,	then

Φ=Φ0n=Bπr2=μ0Hπr2,

where	the	magnetic	flux	quantum	Φ0=πℏ/e=2.07×10−15Js/C.	Thus,
H = Φ0nμ0πr2≃0.5 A/m.

PROBLEMS
7.1	Derive	an	expression	for	the	refractive	index	of	an	isotropic	plasma	(in	the
absence	of	 an	 external	magnetic	 field),	 taking	 into	 account	 the	motion	of	 free
electrons	and	positively	charged	ions.	Take	 into	account	 the	energy	 loss	of	 the
particles	(due	to	inelastic	collisions)	by	introducing	into	the	equations	of	motion
of	the	particles	the	friction-like	damping	forces	Fe	=	−	δeve	and	Fi	=	−	δivi	 for
the	 electrons	 and	 ions,	 respectively.	 (Answer:	 n=1−12(ωpe2ω2−iγeω
+ωpi2ω2−iγiω),  γe=δ/m,  γi=δi/M.)
7.2	 Determine	 the	 ratio	 of	 the	 density	 of	 the	 displacement	 current	 to	 the
conduction	 current	 density	 and	 loss	 tangent,	 tan	 δe,	 in	 seawater	 (ε	 =	 κε0,  
κ=80.0,   ε0=8.85×10−12 F/m,  σ	=	4.00	S/m)	for	waves	with	frequencies	in	the
range	 of	 f	 =	 105	 and	 1011	 Hz.	 (Answer:	 At	 f=105 Hz, jdisp/jcond=1.11×10−4 
and  tanδe=9×103,	and	at	f=1011 Hz, jdisp/jcond=111 and  tanδe=9×10−3.)
7.3	 A	 plane	 wave	 with	 a	 frequency	 of	 2	 GHz	 propagates	 in	 a	 medium	 with
parameters	 κ	 =	 2.40,	 κm	 =	 1.00,	 tan	 δe	 =	 10−1.	 Find	 the	 wavelength	 in	 the



medium,	the	phase	velocity,	and	the	attenuation	coefficient	of	the	wave,	δ	=	1/k
″.	(Answer:	λ≃9.70×10−2m, vph≃1.94×108 m/s,   δ≃ 0.31 m.)
7.4	Calculate	the	thickness	of	the	skin	layer	(the	penetration	depth	of	the	wave
inside	 the	medium)	and	 the	absolute	value	of	 the	wave	resistance	(impedance)
for	a	metal	with	a	conductivity	σ	=	5.00	×	107	S/m	and	magnetic	permeability
κm	=	1	at	a	frequency	f	=	10	GHz.	(Answer:	ε	=	κε0,  κ=80.0,   ε0=8.85×10−12 
F/m,  σ	=	4.00	S/mδ≃7×10−7m, Z=0.03(1+i)Ω.)
7.5	Determine	the	thickness	of	a	copper	shield	(σ	=	5.90	×	107	S/m,	κm	=	1)	that
provides	amplitude	attenuation	of	104	for	an	electromagnetic	field	at	each	of	two
frequencies:	f	=	50	Hz	and	f	=	50	MHz.	(Answer:	At	f	=	50	Hz	we	get	l	≃	8.60
cm	and	at	f	=	50	MHz	we	get	l	≃	86.0	μm.)
7.6	An	electromagnetic	wave	with	angular	frequency	ω	=	105	s−1	is	propagating
along	a	copper	bar.	The	conductivity	of	the	copper	is	σ	=	5.60	×	107	S/m,	and	its
magnetic	 permeability	 is	 μ = μ0κm, κm = 1.	 Determine	 the	 wave	 resistance
(impedance)	of	the	bar,	the	depth	of	penetration	of	the	field	into	the	bar,	and	the
phase	 velocity	 and	 wavelength	 of	 the	 wave	 in	 the	 bar.	 (Answer:
Z=1+i2×4.73×10−4Ω,	 the	penetration	depth	δ	=	0.53	mm,	vph	=	53.3	m/s,	λ	=
3.30	mm.)
7.7	Determine	 the	 fraction	of	 the	wave	energy	converted	 into	heat	 for	 a	wave
incident	normally	from	vacuum	on	the	surface	of	a	metal	with	conductivity	σ	=
5.70	×	107	S/m.	The	wave	frequency	f	=	10	GHz.	(Answer:	ΔII0≈2.98×10−4.)
7.8	A	TM-type	surface	electromagnetic	wave	propagates	along	the	flat	interface
between	a	metal	and	a	vacuum.	Determine	the	ratio	of	the	penetration	depth	of
the	surface	wave	into	the	metal	and	into	the	vacuum.	The	angular	frequency	ω	=
ωp/2,	and	the	permittivity	of	the	metal	is	described	by	the	Drude	model	with	ωp
=	1016	s−1	and	γ	=	0.
7.9	Using	 the	London	 equation	 (7.45),	 determine	 the	 distribution	 of	magnetic
intensity	and	the	distribution	of	current	density	in	a	superconducting	plate	that	is
placed	in	a	homogeneous	magnetic	field	parallel	to	the	surface	of	the	plate.	The
magnetic	 intensity	 is	H0	 and	 the	 thickness	 of	 the	 plate	 is	d.	 (Part	 of	 answer:
H(z)=H0cosh(z/δ)cosh(d/2δ).)



Section	III
Electromagnetic	Waves	in	Periodic	and
Waveguiding	Structures



8Waves	in	Periodic	Structures
Diffraction	 by	 periodic	 structures,	 with	 period	 comparable	 with	 the	 wavelength	 of	 the
incident	 electromagnetic	 radiation,	 has	 been	 studied	 extensively.	 Diffraction	 gratings,
interference	filters,	and	multilayer	dielectric	mirrors	are	some	examples	of	such	structures.
Important	properties	of	crystals	are	determined	by	the	periodicity	of	their	crystal	structure.
For	example,	the	presence	of	periodicity	in	crystals	leads	to	the	appearance	of	“allowed”
and	 “forbidden”	 bands	 in	 their	 energy	 spectrum.	 In	 this	 case,	 the	 period	 of	 the	 crystal
lattice,	d,	is	comparable	to	the	de	Broglie	wavelength	of	electrons	λe:d~λe~10−10m.

The	 propagation	 of	 electromagnetic	 waves	 in	 media	 with	 periodically	 changing
properties	 results	 in	 the	emergence	of	new	phenomena.	These	are	most	noticeable	when
the	wavelength	of	the	wave,	which	propagates	in	the	medium,	becomes	comparable	to	the
medium’s	 spatial	 period.	 For	 example,	 in	 diffraction	 experiment,	 in	 which	 the	 wave	 is
incident	 normally	 on	 a	 flat	 periodic	 lattice,	 a	 diffraction	 pattern	 is	 formed	 by	 the
transmitted	wave.	The	pattern	exhibits	a	characteristic	alternation	of	maxima	and	minima
in	the	intensity	of	the	diffracted	wave.	In	an	experiment	with	a	photonic	crystal	with	the
wave	 propagating	 in	 the	 periodic	 medium	 along	 a	 periodicity	 axis,	 the	 characteristic
allowed	 and	 forbidden	 photonic	 bands	 in	 the	 reflection	 and	 transmission	 spectra	 are
formed.	 In	 this	 chapter,	we	will	 consider	 a	 number	 of	 common	diffraction	principles	 in
periodic	structures.

8.1				DIFFRACTION	PHENOMENA
Diffraction	 is	 a	 phenomenon	 that	 is	 connected	 with	 waves	 of	 any	 nature	 such	 as
electromagnetic	waves	or	material	waves.	This	phenomenon	consists	 in	 the	deviation	of
wave	propagation	near	obstacles.	Experiments	show	that	light	(electromagnetic	waves	in
the	 visible	 range)	 under	 certain	 conditions	 can	 penetrate	 into	 the	 area	 of	 the	 geometric
shadow	as	determined	by	geometrical	optics.	For	example,	 if	we	place	an	opaque	plane
with	a	circular	aperture	in	the	path	of	a	light	beam,	we	observe	a	bright	circular	spot	on	a
screen	behind	the	aperture	with	a	diameter	 that	 is	related	to	 the	aperture	diameter.	 If	we
reduce	 the	diameter	of	 the	aperture,	 the	diameter	of	 the	diffraction	pattern	on	 the	screen
will	decrease	accordingly	up	to	some	limit.	If	the	diameter	of	the	aperture	approaches	the
light	wavelength,	 the	diffraction	pattern	diameter	on	 the	 screen	behind	 the	aperture	will
begin	 to	 increase	 as	 the	 diameter	 of	 the	 hole	 is	 reduced.	 The	 most	 distinct	 diffraction
patterns	 are	 observed	 in	 cases	 where	 the	 sizes	 of	 obstacles	 are	 comparable	 to	 the
wavelength	 of	 light.	The	 parameter	 λ/b	 (where	b	 is	 a	 characteristic	 size	 of	 an	 obstacle)
plays	an	important	role	in	diffraction	phenomena.	If	λ/b	→	0,	diffraction	phenomena	are
negligibly	 small	 and	 can	 be	 ignored;	 in	 the	 case	 λ/b	 →	 1,	 the	 diffraction	 phenomena
become	dominant	and	must	be	taken	into	account.

For	 the	precise	 calculation	of	 a	diffraction	pattern,	 it	 is	 necessary	 to	 solve	Maxwell’s
equations	with	boundary	conditions	 that	are	defined	by	 the	boundaries	and	properties	of
the	 obstacles.	 The	 simplest	 description	 of	 diffraction	 is	 based	 on	 the	 Huygens–Fresnel
principle,	according	to	which	each	point	of	a	wave	front	becomes	a	source	of	secondary



spherical	wave	as	shown	in	Figure	8.1.	These	secondary	waves	are	coherent	with	respect
to	each	other	and	therefore	interfere	and	form	a	new	wave	front	of	the	propagating	wave
(Figure	8.1).	Resulting	pattern	at	any	point	 in	space	 is	 the	 interference	of	 the	secondary
waves	emitted	by	all	wave	surfaces.

In	 accordance	 with	 the	 Huygens–Fresnel	 principle,	 every	 element	 dA	 of	 the
electromagnetic	 wave	 front	 A	 becomes	 a	 source	 of	 secondary	 spherical	 waves.	 The
amplitude	 of	 those	waves	 is	 proportional	 to	 the	 area	 dA	 and	 it	 decreases	 with	 distance
from	that	element	as	1/r.	As	a	result,	the	contribution	from	the	element	dA	located	at	the
point	P	 of	 the	 surface	A	 to	 the	 intensity	 at	 point	 r	 can	 be	 determined	 by	 the	 following
equation:

FIGURE	8.1	Wave	front	of	the	plane	wave	before	and	after	a	screen	with	a	hole:	(a)	the
diameter	of	the	hole	is	small	compared	to	the	wavelength	and	(b)	the	diameter	of	the	hole
is	 substantially	 larger	 than	 the	 wavelength	 of	 the	 incident	 light.	 The	 inset	 shows	 the
formation	of	a	wave	front	based	on	the	Huygens–Fresnel	principle.

dE(P1)=E0(P)exp(−ik⋅r)rK(φ)dA. (8.1)

Here,	E0(P)	 is	 the	 amplitude	 of	 the	 field	 of	 elementary	 secondary	 source	with	 area	 dA
located	 at	 an	 arbitrary	 point	P	 of	 the	wave	 front	 of	 the	 incident	wave;	 the	 second	 term
describes	 the	 coordinate	 dependence	 of	 the	 spherical	 wave	 emitted	 by	 an	 elementary
source.	Factor	K(φ)	accounts	for	the	dependence	of	dE	on	the	angle	φ	between	the	normal
to	 the	 unit	 area	 and	 the	 direction	 of	 the	 radius—vector	 r	 pointed	 in	 the	 direction	 of
observation	point	(see	Figure	8.2):

K(φ)≈i2λ(1+cos 2φ). (8.2)

The	 summation	 of	 the	 secondary	waves	 at	 the	 observation	 point	P1	 is	 performed	 using
Huygens–Fresnel	integral,	which	has	the	form

E(P1)=∫AE0(P)exp(−ik⋅r)rK(φ)dA. (8.3)

Let	 us	 write	 now	 Equation	 (8.3)	 in	 the	 coordinate	 representation,	 assuming	 that	 the
diffraction	angles	are	small	φ ≪ 1, that is, K(φ)≈i/λ.	Therefore,	the	amplitude	of	the	field
in	the	integral	of	Equation	8.3	does	not	depend	on	 the	position	of	a	 light	 front	and	 is	as
follows:

E(x,y,z)=iλ∫−∞∞∫−∞∞E0(x,y)exp(−ik⋅r)rdxdy, (8.4)



where	r=[	(x1−x)2+(y1−y)2+z2	]1/2.

FIGURE	8.2	Construction	of	the	diffraction	pattern.

In	 the	 Fresnel	 approximation,	 the	 diffraction	 pattern	 is	 observed	 in	 the	 region	 that	 is
close	to	the	source,	that	is,	close	to	the	region	of	E0(P)	and	close	to	axis	z.	Very	often,	this
region	is	named	the	nearfield	region.	As	the	diffraction	angles	are	small	for	this	region,	the
diffraction	broadening	of	the	image	is	small	too	and	the	Equation	(8.4)	can	be	simplified.
To	this	end,	in	the	near-field	region,	we	have

(x1−x)z≪1,     (y1−y)z≪1.

It	can	be	assumed	that	k⋅r	=	kr,	where	k	=	2π/λ	and	modulus	of	the	radius	vector	r	in	the
exponent	can	be	represented	 in	 the	approximate	form	that	 follows	from	the	Tailor	series
for	r:

r≈z+(x1−x)2+(y1−y)22z. (8.5)

As	we	 use	Equation	8.5	 to	 replace	 r	 in	 Equation	 8.4,	we	will	 keep	 the	 second	 term	 of
Equation	8.5	only	in	the	exponent	of	Equation	8.4,	but	for	a	slowly	changing	denominator,
we	assume	that	r	≈	z	=	const.	As	a	result,	we	obtain

E(x1,y1,z)=iλze−ikz∫−∞∞∫−∞∞E0(x,y)exp(−ik(x1−x)2+(y1−y)22z)dxdy. (8.6)

In	 the	Fraunhofer	approximation,	 the	 diffraction	 pattern	 is	 observed	 at	 large	 distances
from	 the	 object	 (the	 so-called	 far-field).	 Therefore,	 unlike	 in	 the	near-field	 diffraction
(i.e.,	Fresnel	 diffraction),	 the	 image	 size,	 even	 at	 low	 diffraction	 angles,	 substantially
exceeds	the	size	of	the	object,	that	is,	x1	and	y1	are	not	small	compared	to	z,	but	x	and	y	are
small	compared	to	x1,	y2	and	z.	The	expansion	of	the	expression	for	r	is	now	carried	out	as
follows:

r=[	z2+(x1−x)2+(y1−y)2	]1/2=[	z2+x12+y12+(x2−2xx1)+(y2−2yy1)
]1/2                                                                     =[	r02+(x2−2xx1)+(y2−2yy1)

]1/2                                                                     ≈r0(1−xx1r02−yy1r02),

where	r0=(z2+x12+y12)1/2.	 In	 this	expansion,	we	have	neglected	 the	small	 terms	in	 the
expansion,	 which	 are	 proportional	 to	 (x/r0)2+(y/r0)2.	 Now,	 unlike	 the	 Fresnel
approximation,	we	restricted	ourselves	 to	 linear	 terms	 in	 the	expansion	of	r	 in	 the	small
parameter	 (the	 ratio	 of	 the	 object’s	 size	 to	 the	 distance	 to	 it).	 Equation	 8.4	 in	 this	 case
takes	the	form

E(x1,y1)=iλr0e−ikr0∫−∞∞∫−∞∞E0(x,y)exp[	ikr0(xx1+yy1)	]dxdy. (8.7)



Expressions	(8.6)	and	(8.7)	allow	us	to	determine	the	diffraction	pattern	of	the	light	front
for	various	simple	objects—apertures,	slits,	obstacles,	and	lattices.

For	a	qualitative	description	of	the	diffraction	phenomena,	the	method	of	Fresnel	zones
is	often	used.	To	understand	it,	let	us	consider	the	following	example.	Let	the	light	wave
from	a	distant	source	be	incident	normally	on	an	opaque	screen,	which	has	a	small	circular
hole	of	radius	R.	Let	the	observation	point	P	be	located	on	the	axis	of	symmetry	and	at	a
distance	L	 from	 the	 screen.	 The	 wave	 surfaces	 of	 the	 incident	 light	 are	 parallel	 to	 the
screen	plane	and	one	of	them	coincides	with	the	screen.	In	accordance	with	the	Huygens–
Fresnel	principle,	each	point	of	the	wave	surface	becomes	a	source	of	secondary	spherical
waves.	All	 secondary	waves	 interfere	 at	 the	 observation	 point	 P,	 and	 the	 result	 of	 their
interference	determines	the	intensity	of	the	resultant	diffracted	wave.	In	order	to	determine
the	diffracted	wave,	it	is	necessary	to	split	the	wave	surface	within	the	aperture	into	rings
known	 as	Fresnel	 zones.	 The	 partition	 is	 carried	 out	 as	 follows:	 the	 distance	 from	 the
central	point	O	to	the	observation	point	P	is	equal	to	L.	The	distance	from	the	boundary	of
the	first	zone	to	the	observation	point	P	is	chosen	to	be	equal	to	L+	λ/2.	The	distance	from
the	 boundary	 between	 the	 first	 zone	 and	 the	 second	 zone	 to	 the	 observation	 point	P	 is
chosen	 to	be	equal	 to	L+	2(λ/2)	and	so	on	(Figure	8.3).	Thus,	 the	difference	 in	distance
from	adjacent	Fresnel	zone	boundaries	to	the	observation	point	P	differs	by	λ/2,	and	thus,
the	vibrations	from	adjacent	zones	come	to	point	P	with	opposite	phases.

The	entire	area	of	the	hole	is	divided	into	concentric	rings,	each	of	which	is	a	Fresnel
zone	 (the	 central	 zone	 is	 a	 circle)	 (see	 Figure	8.4).	 From	 geometrical	 considerations,	 it
follows	that	the	radii	of	the	Fresnel	zones	are	equal	to

ρm=mλL+m2λ24≈mλL,

where	we	took	into	account	that	λ	≪	L.

FIGURE	8.3	Partitioning	of	the	wave	surface	of	the	Fresnel	zone.



FIGURE	8.4	The	radii	of	the	Fresnel	zones	for	a	circular	hole.

The	number	of	zones	that	fit	inside	a	hole	of	radius	R	is	equal	to	m=	R2/λL.	The	areas	of
all	Fresnel	zones	are	identical	and	equal	to	the	area	of	the	central	zone,	which	has	the	form
of	a	circle.	The	 result	of	 the	 interference	of	 secondary	waves	at	point	P	depends	on	 the
number	 of	 open	 zones.	 Since	 the	 areas	 of	 all	 zones	 are	 identical,	 they	 give	 the	 same
contribution	to	the	resultant	intensity	at	point	P.	However,	each	successive	zone	is	a	little
further	from	the	point	of	the	previous,	and	hence,	its	contribution	will	be	slightly	smaller
than	that	of	the	previous	zone.	If	Am	is	the	amplitude	of	the	oscillations	created	at	the	point
P	 by	 the	mth	 zone,	 then	Am+1	 <	Am.	 If	 we	 take	 into	 account	 that	 the	 vibrations	 from
neighboring	 zones	 come	 to	 a	 point	 P	with	 opposite	 phases,	 then	 the	 total	 amplitude	 of
oscillations	is	determined	by	the	expression

A=A1−A2+A3−A4+⋯+Am=A1−(A2−A3)−(A4−A5)−⋯−(Am−1−Am).

Since	 all	 the	 expressions	 in	 brackets	 are	 positive,	 the	 total	 amplitude	 is	 always	 smaller
than	 the	amplitude,	which	 is	generated	by	 the	first	Fresnel	zone.	 It	can	be	shown	that	 if
there	 is	 no	 screen,	 that	 is,	 there	 is	 infinite	 number	 of	 Fresnel	 zones,	 then	 the	 total
amplitude	 of	 oscillations	 is	 two	 times	 smaller	 than	 the	 amplitude	 due	 to	 the	 first	 zone.
Diffraction	effects	are	observed	when	the	hole	fits	only	a	small	number	of	Fresnel	zones.

The	diffraction	pattern	consists	of	alternating	maxima	and	minima	in	the	intensity	of	the
diffracted	 light	 behind	 a	 barrier	 that	 is	 a	 consequence	 of	 an	 interference	 of	 light	waves
diffracting	on	a	barrier.	Often,	the	diffraction	pattern	is	concentrated	in	a	very	narrow	area
of	space	at	the	boundary	between	the	light	and	shade	of	a	barrier.	In	this	case,	it	is	rather
difficult	to	observe	the	diffraction	pattern.	That	is	why	in	many	cases,	the	propagation	of
light	is	described	without	taking	into	account	the	wave	properties	of	light,	by	applying	the
laws	of	geometrical	optics.	However,	the	laws	of	ray	optics	cannot	explain	a	wide	range
of	 phenomena.	Thus,	we	must	 ask	 the	 following	 question:	 under	which	 conditions	 it	 is
possible	to	apply	the	laws	of	geometrical	optics	and	when	is	it	necessary	to	use	the	wave
theory	of	diffraction?

Optical	phenomena,	in	which	the	wavelength	of	light	is	small	compared	with	the	size	of
the	obstacle,	can	be	explained	by	geometrical	optics.	The	condition	λ	→	0	is	basic	for	the
transition	 from	wave	optics	 to	geometrical	optics.	 In	geometrical	optics,	phenomena	are
characterized	by	a	rectilinear	propagation	of	rays.

Exercise	8.1

A	 parallel	 light	 beam	 of	 wavelength	 λ	 =	 0.50	 μm	 is	 incident	 normally	 on	 an	 opaque
diaphragm	with	a	circular	aperture	of	radius	r	=	1.00	mm.	A	screen	is	placed	in	the	path	of



the	 rays	 passing	 through	 the	 aperture.	 Determine	 the	maximum	 distance	Lmax	 from	 the
center	of	the	aperture	to	the	screen	when	at	the	center	of	the	diffraction	pattern	a	dark	spot
is	still	observed.

Solution.	The	distance	at	which	we	will	see	a	dark	spot	is	determined	by	the	number	of
Fresnel	zones	that	fit	the	hole.	If	the	number	of	zones	is	even,	a	dark	spot	is	in	the	center
of	the	diffraction	pattern.	The	number	of	Fresnel	zones	that	fit	the	hole	decreases	with	the
distance	 from	 the	 screen.	The	 smallest	 number	 of	 zones	 is	 equal	 to	 two.	Therefore,	 the
maximum	distance	at	which	 there	 still	will	 be	 a	dark	 spot	 in	 the	 center	of	 the	 screen	 is
determined	by	the	condition	according	which	two	Fresnel	zones	should	fit	the	hole.

From	Figure	8.5,	it	follows	that	the	distance	from	the	observation	point	O	on	the	screen
to	 the	 edge	 of	 the	 hole	 for	 more	 than	 2(λ/2)	 is	 greater	 than	 the	 distance	 R0	 =	 Lmax.
According	to	the	Pythagorean	theorem,

r2=(Lmax+2λ2)−Lmax2=2λLmax+λ2.

FIGURE	8.5	Diffraction	from	a	circular	hole.

Taking	into	account	that	λ	≪	Lmax	and	that	 the	term	containing	λ2	can	be	neglected,	 the
last	equation	can	be	rewritten	as

r2=2λLmax.

From	this	equation,	we	obtain	Lmax	=	r2/2λ	=	1.00	m.

8.2				DIFFRACTION	BY	A	SLIT
Let	 us	 first	 consider	 the	 simplest	 case	 of	 diffraction	 of	 light—by	 a	 single	 slit	 in	 a	 flat
opaque	 plane.	 Assume	 that	 a	 plane	 monochromatic	 wave	 with	 angular	 frequency	 ω
(wavelength	 λ)	 is	 incident	 normally	 on	 a	 long	 narrow	 slit	 of	 width	 b.	 It	 is	 useful	 to
introduce	 the	dimensionless	 parameter	 b2/lλ,	where	 l	 is	 the	distance	 from	 the	 slit	 to	 the
point	of	observation.	It	is	possible	to	distinguish	the	following	three	situations:

b2lλ≪1  (or l≫b2lλ)      Fraunhofer diffraction,b2lλ≈1  (or l≈b2lλ)      Fresnel 
diffraction,b2lλ≫1  (or l≪b2lλ)      Geometrical	optics. (8.8)

The	Fraunhofer	diffraction	can	be	observed	by	placing	two	lenses	between	the	light	source
S	 and	 the	 observation	 point	P	 so	 that	 the	 points	 S	 and	P	 are	 at	 the	 focal	 plane	 of	 the
corresponding	 lenses	 (Figure	8.6).	Now,	we	will	discuss	 this	 type	of	diffraction	 in	more
details.



We	arrange	the	x-axis	x	in	the	plane	of	the	slit	perpendicular	to	its	edges	and	the	origin
of	coordinates	at	the	slit	center.	When	the	wave	front	reaches	the	slit,	all	its	points	become
sources	 of	 secondary	 coherent	 spherical	 waves	 according	 to	 the	 Huygens–Fresnel
principle.	 Consider	 an	 elemental	 area	 with	 position	 coordinate	 x	 and	 width	 dx.	 We
compare	 at	 the	 observation	 point	 P	 the	 phase	 difference	 between	 the	 wave	 from	 the
element,	at	the	center	of	slit,	and	the	element	at	the	x	as	it	is	shown	on	the	inset	of	Figure
8.6.	We	assume	that	 the	phase	of	 the	secondary	wave,	which	arrives	at	point	P	from	the
element	 at	 x	 =	 0,	 is	 equal	 to	 zero.	As	 a	 result,	 the	 phase	 of	 the	wavelet	 at	 P	 from	 the
element	at	x	is

FIGURE	8.6	Schematics	of	setup	for	the	Fraunhofer	diffraction.

ψ(x)=−2πλΔ=−2πλx sinφ	=	−k0x sinφ, (8.9)

where	the	angle	φ	determines	the	direction	of	the	diffracted	wave	emitted	by	an	element	at
x.	 The	 amplitude	 of	 the	 wave	 at	 P	 generated	 by	 the	 element	 with	 coordinate	 x	 in	 the
direction	φ	is	given	by

dE(φ)=E0bexp[	i(ωt−k0x sinφ)	]dx. (8.10)

We	use	the	relation	γ	=	(π/λ)sinφ=(k0/2)sinφ	and	integrate	expression	(8.10)	across	the	slit
width.	For	the	resultant	electric	field	at	the	observation	point,	defined	by	the	angle	φ,	we
obtain

E(φ)=E0b∫−b/2b/2exp[	i(ωt−k0x sinφ)	]dx            =E0bexp(iωt)∫
−b/2b/2exp(−2iγx)dx            =E0 exp(iωt)exp(iγb)−exp(−iγb)2iγb. (8.11)

Applying	the	equation

sinu=12i[	exp(iu)−exp(−iu)	],

we	arrive	at	the	following	expression	for	resultant	amplitude:

E(φ)=E0 exp(iωt)sin(γb)γb=E0 exp(iωt)sin(πbλsinφ)/πbλsinφ. (8.12)



The	 time	 factor	 does	 not	 affect	 the	 intensity	 distribution	 in	 space,	 and	 for	 the	 intensity
I(φ)=E(φ)E*(φ),	we	obtain

I(φ)=I0J1(φ) (8.13)

where

I0=|	E0	|2,    J1(φ)=(sin αα)2,   α=πbλsinφ

I0	is	the	intensity	of	the	incident	wave	function

J1(φ)	is	the	diffraction	pattern	of	a	single	slit

The	intensities	of	the	diffraction	maxima	decrease	fast	with	the	order	of	diffraction.	The
ratio	of	the	intensity	maxima	for	the	first	four	orders	of	diffraction	is

I0:I1:I3:I4=1:(23π)2:(25π)2:(27π)2≈1:0.047:0.017:0.008.

Therefore,	 the	 main	 fraction	 of	 the	 diffracted	 intensity	 is	 concentrated	 inside	 the	 first
maximum	that	is	located	between	the	first	two	minima	with	n	=	±1,	that	is,	in	the	interval
determined	 by	 the	 angles	 −φ1< φ <φ1 where sin φ = λ/b.	 The	 width	 of	 the	 central
maximum	decreases	with	the	increase	in	the	slit	width,	and	for	b≫	λ,	we	get	φ1	=	λ/b.	The
angular	dependence	of	the	intensity	J1(φ)=I(φ)/I0	is	shown	in	Figure	8.7.

FIGURE	 8.7	 Angular	 dependence	 of	 the	 intensity	 J1(φ)	 =	 I(φ)/I0	 of	 the	 Fraunhofer
diffraction	pattern	from	a	single	slit.

In	this	diffraction	pattern,	we	have	a	main	maximum	centered	around	the	direction	φ	=
0	and	a	number	of	secondary	maxima	whose	directions	are	determined	from	the	condition

b sinφ=±2n+12λ, (8.14)

where	n	=	1,	2,	3,	4,	…	is	the	index	of	secondary	maximum.

According	 to	 Equation	 8.13,	 the	 condition	 for	 the	 observation	 of	 diffraction	 minima
(which	are	located	between	the	maxima)	is	given	by



b sinφ=±nλ. (8.15)

From	 this,	 it	 follows	 that	 a	 decrease	 in	 the	 slit	 width	 b	 results	 in	 a	 broadening	 of	 the
diffraction	pattern.

For	b	=	λ,	sin	φmin	=	1	for	n	=	1	and	only	one	minimum	can	be	observed	at	φmin	=	π/2,
which	 means	 that	 the	 characteristic	 diffraction	 pattern	 with	 alternating	 maxima	 and
minima	 disappears	 if	 b	 <	 λ.	 The	 increase	 in	 the	 slit	 width	 leads	 to	 a	 narrowing	 of	 the
diffraction	pattern.	The	limiting	value	of	the	slit	width	bmax	is	determined	by	the	resolving
power	of	 the	observer’s	eye.	Assuming	that	 the	angular	position	of	 the	first	minimum	is
equal	 to	 the	 smallest	 angle	 resolved	by	 the	observer’s	 eye	 (i.e.,	 λ/bmax≈10−3),	we	 find
that	bmax≈103λ.	Thus,	for	observation	of	the	diffraction	of	a	slit,	its	width	has	to	be	in	the
interval	λ<b<103λ.	For	visible	light,	λ	is	about	0.5	μm,	so	the	slit	width	should	be	in	the
range	0.5	μm	<	b	<	500	μm.

Exercise	8.2

A	parallel	light	beam	of	wavelength	λ	is	incident	normally	on	a	slit	with	width	b.	Find	the
angular	width	Δφ0	and	 the	 linear	width	Δx0,	widths	of	 the	central	diffraction	maximum
observed	on	a	screen,	which	is	placed	at	a	distance	l	≫	b	from	the	slit.	Assume	that	the	slit
width	is	much	larger	than	the	wavelength.

Solution.	The	central	 intensity	maximum	of	 the	diffraction	pattern	 lies	between	 the	 two
first	minima.	Intensity	minima	after	diffraction	from	the	slit	are	observed	at	angles	given
by	Equation	8.15:	bsin	φ	=	±nλ,	where	n	is	the	diffraction	order,	and	for	n	=	±1,	we	have

sinφ±1=±λb.

As	the	slit	width	is	much	larger	than	the	wavelength,	therefore	the	angles	φ±1	are	small	and
are	approximately	φ±1=±λ/b.	Thus,	the	separation	angle	between	these	minima	is

Δφ±1=φ−1−φ+1=2λb.

The	linear	width	of	the	central	maximum	is	given	by	the	expression

Δx±1=lΔφ±1=2lλb.

8.3				DIFFRACTION	BY	A	1D	LATTICE
A	 diffraction	 grating	 is	 an	 optical	 device	 used	 for	 the	 separation	 in	 space	 of
electromagnetic	waves	with	different	wavelengths	 in	a	 light	beam.	 If	 the	properties	of	a
structure	change	periodically	only	in	one	direction,	the	array	is	1D	(linear).	If	the	array	is
periodic	 along	 two	 or	 three	 directions,	 the	 array	 is	 called	 2D	 or	 3D,	 respectively.	 It	 is
possible	to	distinguish	the	following	two	(idealized)	array	types:

1.	An	amplitude	array	 that	 imposes	 periodic	 changes	 in	 the	 amplitude	 of	 the
transmitted	wave	without	influencing	its	phase
2.	A	phase	array	 that	imposes	periodic	changes	in	the	phase	of	the	transmitted
wave	but	does	not	influence	its	amplitude

In	practice,	amplitude–phase	 diffraction	gratings,	which	 change	both	 the	 amplitude	 and



the	phase	of	the	transmitted	wave,	are	often	used.

The	 simplest	 1D	 amplitude	 diffraction	grating	 is	 composed	of	N	 identical	 equidistant
parallel	 slits	 in	 an	opaque	 screen.	The	widths	of	 the	 slit	 and	opaque	parts	 of	 the	 screen
between	two	adjacent	slits	are	b	and	a,	respectively.	This	grating	is	a	1D	array	with	period
d	 =	 a	 +	 b.	 We	 assume	 that	 a	 plane	 monochromatic	 wave	 is	 incident	 normally	 on	 the
grating.	 Since	 the	 light	 waves	 traveling	 from	 each	 slit	 are	 coherent,	 they	 will	 interfere
among	 themselves.	 The	 diffraction	 pattern	 in	 the	 transmitted	 wave	 is	 the	 result	 of
interference	between	these	waves.	The	diffraction	pattern	consists	of	a	number	of	narrow
bright	fringes	separated	by	wide	dark	bands.

In	the	following	text,	we	consider	the	features	of	the	diffraction	pattern	that	is	shown	in
Figure	8.8.	The	path	difference	between	adjacent	rays	from	each	slit	is	dsin	φ.	For	the	rays
1	and	3,	the	path	difference	is	2d	sin	φ,	and	for	rays	1	and	N,	it	is	(N	–	1)d	sin	φ.	Angle	φ
is	defined	(see	also	Figure	8.6)	as	 the	angle	between	 the	direction	of	 the	diffracted	 light
and	the	normal	to	the	plane	of	the	grating.	In	accordance	with	Equations	8.4	and	8.5,	the
electric	field	of	the	diffracted	wave	from	the	first	slit	has	the	form

E1=E0sin ααexp(iωt), (8.16)

with	α	defined	in	Equation	8.13.	The	phases	of	the	other	diffracted	waves	differ	from	the
phase	of	the	first	diffracted	beam	by	the	angle	Δφn=(n−1)k0d sinφ,	where	n	=	1,	2,	3,	…,
N,	so

E2=E0sin ααexp[	i(ωt−k0d sinφ)	],E3=E0sin ααexp[	i(ωt−2k0d sinφ)	],…
EN=E0sin ααexp[	i(ωt−(N−1)k0d sinφ)	]. (8.17)

FIGURE	8.8	The	 geometric	 path	 difference	 of	 rays	 for	Fraunhofer	 diffraction	 on	 a	 1D
periodic	array,	Δ	=	d	sin	φ.

The	 interference	 of	 waves	 1,	 2,	 …	 N	 is	 observed	 on	 a	 screen,	 which	 is	 placed	 at	 a
sufficient	 large	 distance	 from	 the	 grating.	 Since	 the	 secondary	 waves	 have	 the	 same
amplitude,	 in	 order	 to	 find	 the	 total	 field	 from	 all	 the	 slits,	 we	 need	 to	 calculate	 the
following	sum:

E=E0sin αα∑n=1Nexp[	i(ωt−(n−1)k0d sinφ)	]     =E0sin ααexp(iωt)∑n=1Nexp[
−2i(n−1)β	], (8.18)

where	 k0d	 sin	 φ	 =	 2β.	 Calculating	 the	 sum	 on	 the	 right,	 which	 is	 a	 geometrical
progression,	we	obtain

E=E0sin αα⋅1−exp(−2iNβ)1−exp(−2iβ)exp(iωt). (8.19)



Knowing	 the	 expression	 for	 the	 electric	 field,	 we	 can	 calculate	 the	 intensity	 of	 the
diffraction	pattern:

I=(EE*)=E02(sin αα)21−e−2iNβ1−e−i2β⋅1−e2iNβ1−ei2β   =I0(sin αα)22−(e2iNβ
+e−2iNβ)2−(ei2β+e−i2β)=I0(sin αα)2⋅2−2cos 2Nβ2−2cos 2β   =I0(sin 

αα)2⋅(sinNβsin	β)2=I0J1(φ)J2(φ),
(8.20)

where	I0,	J1(φ)	are	determined	by	Equation	8.5	and

J2(φ)=(sinNβsin	β)2,   β=πdλsin φ.

Thus,	the	distribution	of	light	intensity	in	the	diffraction	pattern	from	a	grating	(1D	lattice)
is	given	by

I(φ)=I0J1(φ)J2(φ)=I0sin2(πbλsin φ)(πbλsin φ)2⋅sin2(Nπdλsin φ)sin2(πdλsin φ). (8.21)

The	 angular	 distribution	 of	 the	 relative	 intensity	 of	 the	 diffracted	 light,	 I(φ)/I0,	 for	 a
grating	with	 parameters	N	 =	 5	 and	d/b	 =	 3,	 is	 given	 in	 Figure	 8.9.	 This	 distribution	 is
determined	by	angular	dependences	of	two	factors:	J1(φ)	and	J2(φ).	The	function	J1(φ)	is
the	diffraction	pattern	of	a	 single	 slit	 that	was	considered	earlier	 (see	Figure	8.5),	while
function	J2(φ)	determines	the	interference	contribution	of	all	slits.

FIGURE	 8.9	 The	 angular	 dependence	 of	 the	 intensity	 I(φ)/I0=J1(φ)J2(φ)	 of	 the
electromagnetic	field	for	the	diffraction	on	1D	lattice	with	the	parameters	N	=	5	and	d/b	=
3.

The	function	plotted	in	Figure	8.7	J1(φ)	has	the	following	properties:

•	At	α	=	0	(i.e.,	at	φ	=	0),	it	has	the	main	maximum,	in	which	J1max	=	1.
•	 At	 α=±nπ	 (i.e.,	 at	 b sin φ=±nλ),	 it	 has	 a	 number	 of	 equidistant	 minima,	 in
which	J1min	=	0.
•	At	 α=±(n+1/2)π	 (i.e.,	 at	 b sin φ=(n+1/2)λ),	 it	 has	 a	 number	 of	 the	 secondary
maxima,	in	which	J1max=1/(n+1/2)2π2.

Consider	the	function	J2(φ).	The	function	J2(φ)=J2(β)	has	its	main	maxima	at	values	close
to	β=mπ(m=0, ±1, ±2, ±3,…)	as	both	numerator,	 sin	Nβ,	and	denominator,	 sin	β,	 tend	 to
zero	and	 their	 ratio	 tends	 to	N,	 that	 is,	at	β	=	mπ,	when	sin φ=mλ/d (or φ=arcsin(mλ/d)),



the	value	of	all	main	maxima	of	the	function	J2(φ)	is

J2max=(sinNβsin	β)β=mπ2=N2. (8.22)

In	 spite	 of	 the	 fact	 that	 J2max	 does	 not	 depend	 on	m,	 the	 value	 of	 I(φ)/I0=J1(φ)J2(φ)
depends	on	m	as	it	corresponds	to	different	values	of	angle	φ	=	arcsin(mλ/d)	and	hence	to
the	different	values	of	J1(φ).	This	is	why	the	values	of	I(φ)/I0	at	the	main	maxima	of	I2(φ)
in	Figure	8.9	are	different	for	the	different	values	of	m.

The	minima	of	the	function	J2(φ)	(J2	=	0)	occur	at	sin(Nβ)	=	0	but	sin	β	≠	0,	that	is,	at
Nβ	=	pπ	or	β	=	pπ/N,	where	p	=	±1,	±2,	±3,	…	except	p	=	mN,	with	m	introduced	earlier.
This	means	 that	between	 two	main	maxima,	 there	 are	N–1	minima	with	J2	 =	 0,	 as	 it	 is
shown	in	Figure	8.9.	The	minima,	which	are	next	 to	 the	main	maxima,	 lie	at	 the	points
β1=π(m±1)/N.	As	 the	 number	 of	 slits	 in	 the	 grating	 increases,	 the	 distance	between	 the
minima	and	the	main	maxima	decreases	proportionally	to	1/N,	that	is,	the	value	of	I(φ)/I0
increases	as	given	by	Equation	8.22,	while	the	width	of	the	diffraction	maxima	decreases.

Since	 the	 single-slit	 diffraction	 intensity	 is	 given	 by	 J1(φ)	 and	 the	 grating	 intensity
distribution	is	practically	determined	by	the	J2max,	then

I=I0(J1⋅J2)=N2I0J1. (8.23)

Only	those	main	maxima	of	the	function	J2(φ),	which	are	inside	the	central	maximum	of
function	J1,	will	 be	 strong.	Since	 the	width	of	 a	 slit	b	 is	 usually	 very	 small,	 the	 central
maximum	is	quite	wide.	The	angular	width	of	 this	maximum	is	equal	 to	2λ/b;	 therefore,
within	this	maximum	of	J1,	we	have	several	main	diffraction	peaks	of	the	grating.

White	 light	 is	 a	 superposition	 of	 simple	 harmonic	 waves	 with	 various	 wavelengths,
which	 diffract	 independently	 from	 a	 grating.	 Therefore,	 for	 each	 component,	 the
corresponding	diffraction	conditions	will	be	satisfied	at	different	angles	φ	=	arcsin(mλ/d)
that	 are	 determined	 by	 the	 wavelength	 of	 the	 component.	 This	 means	 that	 the
monochromatic	 components	 of	 white	 light	 incident	 on	 the	 grating	 will	 be	 spatially
separated	 as	 it	 is	 shown	 in	Figure	8.10.	The	 set	 of	 the	main	 diffraction	maxima	 of	mth
order	(m	≠	0)	for	all	monochromatic	components	of	the	incident	light	forms	the	diffraction
spectrum	of	mth	order.	After	the	grating,	the	wave	with	longer	wavelength,	λ1,	(solid	lines)
has	 its	 maxima	 at	 larger	 angles,	 while	 the	 wave	 with	 shorter	 wavelength,	 λ2,	 has	 its
maxima	at	smaller	angles	(dashed	line);	both	waves	have	the	center	maximum	at	m	=	0.

The	 position	 of	 the	 main	 diffraction	 peak	 of	 zero	 order	 does	 not	 depend	 on	 the
wavelength	(for	the	central	maximum,	φ	=	0).	For	white	light,	this	maximum	will	look	like
a	strip	of	white	color.	The	diffraction	spectrum	of	mth	order	(m	≠	0),	on	 the	other	hand,
contains	all	the	colors	of	a	rainbow.

One	of	the	main	characteristics	of	the	grating	is	its	resolving	ability	R	=	λ/δλ.	Here,	λ	is
the	wavelength	of	a	 spectral	 line	corresponding	 to	 the	 spectral	 component	and	δλ	 is	 the
smallest	 difference	 between	 closely	 spaced	wavelengths	 that	 the	 diffraction	 grating	 can
resolve.	Spectral	lines	with	wavelengths	λ	and	λ′	=	λ	+	δλ	are	considered	resolved	if	the



central	maximum	for	one	wavelength	coincides	with	the	first	diffraction	minimum	for	the
other	wavelength.	Therefore,	in	order	to	find	the	resolution	of	the	diffraction	grating,	we
determine	the	position	of	the	center	of	the	mth	maximum	for	the	wavelength	λ	+	δλ.	It	is
given	by	the	condition

d sinφmax=m(λ+δλ). (8.24)

The	minima	situated	closest	to	the	central	maxima	β	=	mπ	are	given	by	β	=	(m	±	1/Ν)π,
where	β	=	(πd/λ)sin	φ.	The	edges	of	mth	maximum	for	wavelength	λ	are	given	by

d sinφmax=(m±1N)λ. (8.25)

FIGURE	 8.10	 Example	 of	 diffraction	 pattern	 of	 light	 that	 consists	 of	 two	 waves	 with
wavelengths	λ1	and	λ2	(λ1	>	λ2).

The	 center	 of	 the	 maximum	 for	 wavelength	 λ	 +	 δλ	 coincides	 with	 the	 edge	 of	 the
maximum	for	wavelength	λ	if

m(λ+δλ)=(m+1N)λ,     mδλ=λN.

From	this	expression,	we	get

R=λδλ=mN. (8.26)

Exercise	8.3

White	light	is	incident	normally	on	a	diffraction	grating	with	slit	spacing	d.	For	different
wavelengths,	the	diffraction	angles	are	different	(the	longer	is	the	wavelength,	the	larger	is
the	angle	of	diffraction).	Determine	(1)	the	angular	dispersion	and	(2)	the	resolution	of	the
diffraction	grating.

Solution.	All	diffraction	maxima	except	the	central	one	(zero	order)	will	correspond	to	the
separate	 spectral	 components	 of	 the	 white	 light.	 For	 large	 orders	 of	 diffraction,
overlapping	of	spectra	of	neighboring	orders	is	possible.	Angular	dispersion	is	a	measure
of	the	angular	separation	of	two	spectral	lines,	which	differ	by	the	unit	of	wavelength.	It
is	defined	by	the	expression

D=δφδλ.



This	 equation	 gives	 the	 angular	 separation	 δφ	 of	 two	 spectral	 lines,	 which	 differ	 in
wavelength	by	δλ.

In	order	to	find	the	angular	dispersion	of	the	diffraction	grating,	we	must	differentiate
expression	(8.14):

d⋅sinφ=mλ,d⋅cosφ	dφ=mdλ,  D=dφdλ=md⋅cosφ.
For	small	angles	of	diffraction,	cos	φ	≈	1,	and	therefore,	we	can	use	the	approximation	D
≈	m/d.	We	see	 that	 the	angular	dispersion	 is	proportional	 to	 the	order	of	diffraction	and
inversely	proportional	to	the	grating	period.

The	resolution	of	a	diffraction	grating	is	determined	by	Equation	8.26:

R=λδλ=mN.

The	resolution	is	proportional	to	the	order	of	diffraction	and	to	the	number	of	slits	in	the
grating.

8.4				DIFFRACTION	BY	A	3D	LATTICE
We	discussed	diffraction	for	 the	case	when	the	secondary	waves	are	 transmitted	through
the	grating	slits.	It	is	also	possible	to	construct	a	1D	periodic	lattice	where	the	transmitting
slits	will	be	replaced	by	reflecting	stripes	so	that	the	diffraction	pattern	will	be	formed	by
rays	 reflected	 from	 different	 stripes.	 In	 the	 case	 of	 an	 opaque	 screen	 with	 periodically
located	holes,	the	2D	lattice	would	produce	a	2D	diffraction	pattern.	In	a	similar	fashion,
the	 holes	 can	 be	 replaced	 by	 light	 reflecting	 circles	 to	 observe	 the	 interference	 of	 the
reflected	 light.	 Finally,	 diffraction	 can	be	 observed	 in	 volume	 (3D)	 structures,	 that	 is,	 a
structure	in	space,	which	is	periodic	in	three	directions.	A	typical	example	of	this	structure
is	the	periodic	lattice	of	a	crystal.	In	this	case,	atoms	of	the	crystalline	structures	will	serve
as	 scatterers	 of	 light.	 Moreover,	 the	 size	 of	 atoms	 is	 substantially	 smaller	 than	 the
characteristic	distance	between	the	atoms	(this	distance	is	known	as	the	lattice	constant	d),
so	crystalline	materials	are	suitable	3D	lattices	to	observe	diffraction.

The	lattice	constants	d	of	different	materials	are	in	the	range	of	0.2	÷	0.5	nm	((2	÷	5)	×
10−10	m)	and	are	too	small	compared	to	the	wavelength	of	visible	light	λ	≈	500	nm	(5	×
10−7	m).	Therefore,	 for	 visible	 light,	 crystalline	materials	 act	 as	 optically	 homogeneous
media,	but	they	are	suitable	for	the	observation	of	diffraction	of	shorter	wavelengths,	for
example,	X-ray	radiation	whose	wavelength	is	comparable	to	the	period	of	crystal	lattices.
The	first	X-ray	diffraction	from	a	crystal	was	observed	in	1913	by	Max	von	Laue.

In	 the	description	of	diffraction	by	3D	periodic	structures,	we	use	 the	angles	between
the	coordinate	axes	and	the	directions	of	propagation	of	the	incident	and	diffracted	light,
respectively	(we	remind	again	that	in	the	case	of	crystalline	materials	the	diffracted	light	is
the	light	scattered	by	the	atoms	of	the	crystal).	If	a,	b,	and	c	are	the	periods	of	the	crystal
lattice	 along	 the	 x-,	 y-,	 z-axes,	 then	 the	 main	 diffraction	 maxima	 satisfy	 the	 following
conditions:

a(cos α −cosα0)=mλ,b(cosβ −cosβ0)=nλ,c(cos γ −cosγ0)=pλ. (8.27)

This	system	of	equations	is	called	the	Laue	equations.	In	these	equations,	α0,	β0,	γ0	and	α,



β,	 γ	 are	 the	 angles	 between	 the	 directions	 of	 propagation	 of	 the	 incident	 and	 diffracted
light,	 respectively,	 and	 the	 coordinate	 axes	 x,	 y,	 z,	 which	we	 assume	 coincide	with	 the
symmetry	axes	of	the	crystal.	In	a	Cartesian	coordinate	system,	the	cosines	of	these	angles
satisfy	the	following	important	relations:

cos2  α0+cos2  β0+cos2  γ0=1, (8.28)

cos2 α+cos2 β+cos2 γ=1. (8.29)

The	set	of	 integral	numbers	m,	n,	p	determines	 the	corresponding	diffraction	peak.	Each
set	of	numbers	(m,	n,	p)	in	the	far-field	diffraction	pattern	corresponds	to	one	bright	spot
(diffraction	 intensity	 maximum)	 as	 it	 is	 shown	 in	 Figure	 8.11.	 Thus,	 the	 result	 of
diffraction	from	a	crystal	observed	on	a	screen	is	a	set	of	bright	points.

It	is	important	to	remember	that	we	can	control	the	direction	of	the	incident	light,	so	we
can	always	know	angles	α0,	β0,	γ0.	To	observe	the	diffraction	peak	of	order	(m,	n,	p)	at	the
given	values	of	angles	α0,	β0,	γ0,	 it	 is	necessary	 that	 the	wavelength	of	an	 incident	 light
has	a	certain	value	in	order	to	satisfy	Equation	8.27.	In	order	to	find	that	wavelength,	one
must	first	find	cos	α,	cos	β,	and	cos	γ	from	Equation	8.27:

cos α=mλa+cosα0,cosβ=nλb+cosβ0,cos γ=pλc+cosγ0.

FIGURE	8.11	Example	of	a	far-field	diffraction	pattern	of	a	crystal.

Taking	power	2	of	the	left-	and	the	right-hand	parts	of	each	equation,	one	gets

cos2 α=(mλa+cosα0)2=(mλa)2+2(mλa)cosα0+cos2 α0,cos2 β=(nλb+cosβ0)2=
(nλb)2+2(nλb)cosβ0+cos2 β0,cos2 γ=(pλc+cosγ0)2=(pλc)2+2(pλc)cosγ0+cos2 γ0.

Adding	these	three	equations,	taking	into	account	Equations	8.28	and	8.29	and	dividing	by
λ,	one	gets	the	equation

[	(ma)2+(nb)2+(pc)2	]λ+2[	(ma)cosα0+(nb)cosβ0+(pc)cosγ0	]=0,

which	determines	the	wavelength	λ	as	the	function	of	the	incident	angles	α0,	β0,	γ0:

λ=−2(m/a)cosα0+(n/b)cosβ0+(p/c)cosγ0(m/a)2+(n/b)2+(p/c)2. (8.30)



For	monochromatic	radiation	with	a	given	wavelength,	λ,	the	conditions	that	a	diffraction
peak	 of	 order	 (m,	 n,	 p)	 occurs	 are	 satisfied	 only	 for	 specific	 angles	 α0,	 β0,	 γ0	 of	 light
incidence	on	the	crystal.

At	 λ	 ≥	 2d0	 (here,	d0	 is	 the	 largest	 of	 the	 three	 spatial	 periods	a,	 b,	 c),	 all	 diffraction
maxima,	except	for	zeroth	order,	must	be	absent.	Light	with	such	wavelength	propagates
in	an	optically	nonuniform	medium	without	diffraction.	Therefore,	the	condition	λ	≥	2d0	is
called	 the	condition	of	optical	homogeneity	of	 the	medium.	For	λ	<	2d0,	 the	diffraction
pattern	as	determined	by	Equation	8.30	is	well	pronounced,	and	it	is	used	to	determine	the
lattice	structure	parameters:	a,	b,	and	c.

The	calculation	of	angular	positions	of	maxima	in	the	diffraction	pattern	from	a	crystal
lattice	can	also	be	carried	out	by	the	following	simplified	method.	The	spatially	periodic
arrangement	of	 atoms	 in	 the	 crystal	 lattice	 is	 replaced	by	 a	periodic	 arrangement	of	 the
parallel	atomic	planes.	The	distance	between	adjacent	lattice	planes	is	called	interplanar
distance;	 it	 defines	 the	 lattice	 period	 in	 the	 crystallographic	 direction.	 Consider	 the
reflection	of	x-rays	from	two	adjacent	atomic	planes	(Figure	8.12).

Rays	1	and	2	are	coherent	and	will	interfere	with	each	other.	Diffraction	from	the	crystal
lattice	 results	 from	 the	 interference	 of	 rays	 1	 and	 2,	which	 are	 reflected	 in	 a	mirrorlike
fashion	from	the	atomic	planes.	Figure	8.12	shows	 that	 the	path	difference	of	 these	rays
(Δ12=AB+BC)

Δ12=2d0 sin θ, (8.31)

and	therefore,	the	condition	for	the	observation	of	diffraction	maxima	is	Bragg’s	equation

2d0 sinθ=mλ, (8.32)

where	the	angle	θ	is	called	Bragg’s	angle.

X-ray	diffraction	by	a	crystal	lattice	is	the	basis	of	structure	analysis	of	crystals—one
of	the	most	powerful	methods	for	studying	the	crystal	structure	of	matter.

Exercise	8.4

In	 one	 of	 the	 methods	 of	 X-ray	 structural	 analysis	 (Debye–Scherrer	 method),
polycrystalline	 samples	 and	 monochromatic	 radiation	 are	 used	 to	 find	 the	 distance
between	planes.	Find	an	expression	that	gives	the	crystal	plane	separation	as	a	function	of
the	X-ray	wavelength.

Solution.	The	majority	of	solids	are	polycrystalline,	that	is,	they	consist	of	large	number
of	 randomly	 distributed	 small	 crystallites.	 When	 illuminating	 such	 a	 polycrystalline
material	by	monochromatic	X-ray	radiation	of	wavelength	λ,	there	will	be	always	a	great
number	 of	 crystallites	 whose	 parallel	 atomic	 planes	 with	 interplane	 distance	 dj	 satisfy
Bragg’s	equation:	θj	=	arcsin(mλ/2dj).

The	directions	of	the	diffracted	waves	lie	on	the	surface	of	a	cone	with	an	apex	angle



equal	to	4θj.	The	rays	will	be	reflected	from	the	given	system	of	parallel	planes	forming	an
angle	2θj	with	 respect	 to	 the	 incident	 ray.	Therefore,	 all	 reflected	 rays	constitute	 a	 cone
with	an	apex	angle	equal	to	4θj.	If	we	place	a	long	strip	of	photographic	film	in	the	form
of	 a	 cylinder	 with	 radius	R	 in	 the	 path	 of	 the	 reflected	 waves,	 we	 get	 a	 set	 of	 double
symmetric	lines	each	of	which	corresponds	to	a	diffraction	maximum	due	to	a	system	of
atomic	planes	(Figure	8.13).	If	the	distance	between	two	lines	(the	length	of	arc	that	rests
upon	an	angle	4θj)	is	equal	to	2Lj,	then	it	can	be	related	with	the	radius	of	a	circle	R:	2Lj	=
4θjR,	which	gives	us

θj=Lj2R   (in radians).

FIGURE	8.12	Schematic	diagram	of	Bragg’s	diffraction	(Equation	8.31)	of	x-rays	from	a
crystalline	lattice.

FIGURE	 8.13	 Diffraction	 from	 a	 polycrystalline	 material:	 crystallites	 whose	 parallel
atomic	 planes	 satisfy	 the	 Bragg’s	 equation	 (a)	 and	 their	 diffraction	 maxima	 on
photographic	film	in	the	form	of	a	cylinder	(b).

By	measuring	 the	distance	2Lj	 between	 two	 symmetric	 lines	 on	 the	X-ray	 film,	we	 can
determine	By	 and	 θj	 sin	 θj.	 Therefore,	 the	 distance	 between	 the	 corresponding	 adjacent
atomic	planes	is	given	by	the	expression

dj=mλ2sinθj=mλ2sin(Lj/2R).

The	central	spot	on	the	film	corresponds	to	the	X-ray	beam	that	was	not	diffracted.

8.5				WAVES	IN	CONTINUOUS	PERIODIC	MEDIA
Consider	a	transparent	nonmagnetic	(κm	=	1)	medium	in	which	the	dielectric	permittivity
for	x	≥	0	is	equal	to	ε0	(vacuum),	while	for	x	≥	0,	it	is	a	continuous	periodic	function	of	x:

ε(x)=εa[	1+δcos(2πxd)	]=ε0κ[	1+δcos(2πxd)	], (8.33)



where

d	is	the	spatial	period	of	the	structure
δ	 is	 the	parameter	 that	determines	 the	modulation	depth	of	 the	medium’s	dielectric
permittivity	and	is	assumed	to	be	small	(δ	≪	1)

In	this	case,	the	equation	for	a	linearly	polarized	wave,	which	propagates	along	x-axis,	in
the	region	x	≥	0	can	be	written	as

∂2E∂x2−1v2[	1+δcos(2Kx)	]∂2E∂t2=0, (8.34)

where

E	=	Ez	is	the	electric	field	of	the	wave
K	=	π/d	and	v=c/κ

We	 assume	 solutions	 in	 the	 form	 of	 a	 monochromatic	 wave	 with	 amplitude	 that	 is	 a
function	of	x:

E(x,t)=A(x)exp(iωt). (8.35)

Substituting	 this	 equation	 into	Equation	 8.34,	we	 obtain	 the	 equation	 for	 the	 amplitude
A(x):

∂2A∂x2+k2[	1+δcos(2Kx)	]A=0, (8.36)

where	k	=	ω/v	is	the	wave	number	of	a	wave	that	propagates	in	the	periodic	medium.	If	δ
is	equal	to	zero,	the	solution	of	Equation	8.36	is	well	known:

A(x)=A+exp(−ikx)+A−exp(ikx), (8.37)

where	A+	 and	A−	 are	 the	 coordinate-independent	 amplitudes	 of	 waves	 traveling	 in	 the
positive	 and	 negative	 directions	 of	 x,	 that	 is,	 amplitudes	 of	 forward-	 and	 backward-
traveling	waves.	In	the	case	of	δ	≪	1,	the	multiplication	factor	in	the	square	brackets	of
Equation	8.36	has	small	periodic	deviation	from	unity.	So,	for	slow	varying	ε(χ),	we	can
seek	 solution	 of	 Equation	 8.36	 in	 the	 form	 (8.37)	with	A+	 and	A−	 being	 slow	 varying
functions	of	x,	that	is,	A+	=	A+(x)	and	A−	=	A−(x).	To	find	the	dependences	of	amplitudes
A+	 and	A−	 on	 x,	 we	 need	 to	 substitute	 Equation	 8.37	 into	 Equation	 8.36	 and	 take	 into
account	 that	 due	 to	 small	 variation	 of	 A+	 and	 A−,	 we	 can	 neglect	 their	 second-order
derivatives	in	comparison	with	the	first-order	derivatives,	since

|	d2A±dx2	|~2Kδ|	dA±dx	|≪2k|	dA±dx	|.

The	most	interesting	case	is	the	one	in	which	the	wave	number	k	appears	to	be	close	to	K.
For	k	=	K,	the	spatial	period	d	=	π/k	is	equal	to	a	half	wavelength	of	the	wave	propagating
in	the	medium	(d	=	λ/2).

The	 condition	λ	=	2d	 is	 a	 special	 case	of	 the	general	 condition	of	Bragg’s	 reflection
(8.32)	 for	 θ	 =	 90°.	When	 this	 condition	 is	 satisfied,	 each	 wave	 out	 of	 a	 set	 of	 waves



reflected	from	consecutive	variations	in	ε	has	a	path	difference	mλ	(m	=	1,	2,	3,	…),	and
the	waves	interfere	with	the	same	phase.	This	means	that	the	wave	traveling	in	the	forward
direction	 is	 efficiently	 reflected	 from	 the	 periodic	 variations	 in	 ε,	 and	 its	 energy	 is
transferred	 to	 the	wave	 traveling	backward.	 In	 turn,	 the	backward	wave	 is	also	reflected
and	returns	part	of	its	energy	to	an	initial	wave.	Thus,	when	k	≈	K	(spatial	resonance),	the
two	counterpropagating	waves	are	related	with	each	other.

Let	 us	 substitute	 in	 Equation	 8.36	K	 =	 k	 –	 ξ,	where	 ξ	 is	 a	 small	 deviation	 from	 the
precise	 resonance	 condition.	Using	 simple	mathematical	manipulations,	 it	 is	 possible	 to
arrive	at	the	following	system	of	related	equations	for	the	amplitudes	of	the	two	waves:

dA+dx=−i(kδ4)A−exp(2iξx),dA−dx=i(kδ4)A+exp(−2iξx). (8.38)

To	solve	this	system,	we	express	from	the	first	equation	the	amplitude	A−(x)	and	substitute
it	 into	 the	 second	equation.	 In	 that	way,	we	arrive	 at	 the	 following	 simple	 second-order
differential	equation:

d2A+dx2−2iξdA+dx−(kδ4)2A+=0. (8.39)

The	general	solution	of	this	equation	can	be	written	as

A+(x)=[	C1exp(−(kδ4)2−ξ2x)+C2exp((kδ4)2−ξ2x)	]exp(iξx), (8.40)

where	 the	 constants	 of	 integration	 C1	 and	 C2	 are	 determined	 from	 the	 boundary
conditions.

We	assume	that	a	wave	with	an	amplitude	A0	is	incident	on	the	periodic	structure	from
the	halfspace	x	<	0.	Therefore,	the	amplitude	A0	is	equal	to	that	of	a	forward	wave	at	x	=	0:
A+	 (0)	=	A0.	For	 the	periodic	medium	occupying	 the	half-space	x	>	0,	 it	 is	necessary	 to
satisfy	 this	 condition:	For	x	→	∞,	 the	 amplitude	A+	 (x)	→	0.	 From	 these	 conditions,	 it
follows	 that	C2	 =	 0	 and	C1	 =	A0.	 As	 a	 result,	 the	 solution	 of	 Equation	 8.39	 takes	 the
following	form:

A+(x)=A0 exp(−(kδ4)2−ξ2x)exp(iξx). (8.41)

Substituting	this	solution	into	the	first	equation	of	the	system	(8.38),	we	find	an	expression
for	the	amplitude	of	the	backward	wave:

A−(x)=4iA0kδ(iξ−(kδ4)2−ξ2)exp(−(kδ4)2−ξ2x)exp(−iξx). (8.42)

From	these	expressions,	 it	 follows	 that	 for	 |	 ξ	 |<kδ/4,	 that	 is,	 for	a	 small	deviation	 from
Bragg’s	resonance,	there	is	total	reflection	of	the	incident	wave.	This	wave	transfers	all	its
energy	to	the	backward	wave,	whose	amplitude	increases	from	value	A− = 0 at x → ∞ to A
− = A0 at	x = 0.	It	follows	from	Equations	8.41	and	8.42	that	the	moduli	of	amplitudes	of
forward	and	backward	waves	are	equal	to	an	arbitrary	value	of	x,	that	is,



|	A+(x)	|=|	A−(x)	|=A0 exp(−(kδ4)2−ξ2x). (8.43)

In	 the	 region	 for	which	 |	 ξ	 |>kδ/4,	 the	 structure	 is	 transparent	 to	 the	wave	 propagating
forward.	 Thus,	 there	 exists	 a	 band	 of	 wave	 numbers	 k	 =	 ω/v	 (and,	 respectively,
frequencies)	 for	 which	 the	 incident	 waves	 are	 efficiently	 reflected	 by	 the	 periodic
structure.	This	forbidden	band	is	determined	by	the	following	inequalities:

K(1−δ4)<k<K(1+δ4),Kv(1−δ4)<ω<Kv(1+δ4). (8.44)

Exercise	8.5

Using	 the	 system	of	Equation	8.38	 for	 the	 amplitudes	 of	 counterpropagating	waves	A±,
show	that	difference	|	A+	|2−|	A−	|2	is	a	constant.

Solution.	We	multiply	 the	 first	 equation	 of	 the	 system	 (8.38)	 by	 (A+)*	 and	 the	 second
equation	of	this	system	by	(A−)*:

(A+)*⋅dA+dx=−i(kδ4)(A+)*⋅A−exp(2iξx),(A−)*⋅dA−dx=i(kδ4)(A−)*⋅A+exp(−2iξx).
Let	us	write	the	system	that	is	the	complex	conjugate	to	the	given	system:

A+⋅d(A+)*dx=i(kδ4)A+⋅(A−)*exp(−2iξx),A−⋅d(A−)*dx=−i(kδ4)A−⋅(A+)*exp(2iξx).
Let	us	add	the	first	and	second	equations	of	these	systems	and	then	subtract:

(A+)*⋅dA+dx+A+⋅d(A+)*dx=−ikδ4(A+)*⋅A−exp(2iξx)+ikδ4A+⋅(A−)*exp(−2iξx),A
−⋅d(A−)*dx+(A−)*⋅dA−dx=−ikδ4(A+)*⋅A−exp(2iξx)+ikδ4A+⋅(A−)*exp(−2iξx).

Now	let	us	subtract	the	second	equation	from	the	first.	Taking	into	account	that	the	right-
hand	sides	of	these	equations	are	the	same,	we	get

(A+)*⋅dA+dx+A+⋅d(A+)*dx−(A−⋅d(A−)*dx+(A−)*⋅dA−dx)=0orddx(|	A+	|2−|	A−	|2)=0,
from	which	it	follows	that	for	any	coordinate	x,	we	get

|	A+	|2−|	A−	|2=const.

The	 magnitudes	 |	 A+	 |2and|	 A−	 |2	 give	 the	 energy	 of	 the	 forward-	 and	 backward-
propagating	waves.	Since	the	backward	wave	occurs	as	a	result	of	multiple	reflections	of
the	 direct	 wave,	 then	 in	 this	 case	 the	 difference	 of	 the	 quantities	 mentioned	 earlier	 is
conserved.

8.6				WAVES	IN	PLANAR	LAYERED	PERIODIC
STRUCTURES

Let	 us	 now	 consider	 a	 planar	 layered	 structure	 consisting	 of	 alternating	 layers	 of	 two
nonmagnetic	 dielectrics	 (κm1,2	 =	 1)	 with	 thicknesses	 d1	 and	 d2	 and	 different	 relative
dielectric	 permittivities	 κ1	 and	κ2	 (Figure	 8.14).	 Two	 adjacent	 layers	 form	 the	 structure
period	d	=	d1	+	d2.

Consider	a	 linearly	polarized	plane	wave	propagating	along	 the	axis	of	 the	structure’s
periodicity	(x-axis)	normal	to	the	interfaces.	We	assume	that	in	the	layer	planes	the	wave
fields	do	not	depend	on	the	coordinates	y	and	z.	Thus,	 in	each	layer,	 the	electric	field	of



the	wave	can	be	described	by	means	of	the	following	1D	wave	equation:

∂2E∂x2−κj(x)c2∂2E∂t2=0,      j=1,2. (8.45)

For	each	layer,	we	seek	solutions	of	these	equations	in	the	form

E(t,x)=Ej exp(iωt−kjx). (8.46)

Following	substitution	of	these	solutions	into	Equation	8.45,	we	obtain	the	Hill	equation:

d2Ejdx2+kj2(x)Ej=0, (8.47)

where	the	wave	number	kj(x)	is	a	periodic	function	of	the	coordinate	x:

kj(x)={	k1,nd<x<nd+d1,           k2,nd+d1<x<(n+1)d, (8.48)

where

kj=k0κj
n	=	0,	1,	2,	…

In	 this	 case,	 k(x)	 is	 a	 step	 function	 for	 which	 the	 solution	 of	 the	 Hill	 equation	 can	 be
obtained	in	the	following	way.	For	each	of	the	two	adjacent	layers,	we	write	the	solution
of	Equation	8.47	as	a	superposition	of	two	counterpropagating	waves:

E1(x)=A11exp(−ik1x)+A12exp(ik1x),      nd<x<nd+d1, 
E2(x)=A21exp(−ik2x)+A22exp(ik2x),     nd+d1<x<(n+1)d.   (8.49)

FIGURE	 8.14	 1D	 periodic	 crystal:	 alternating	 layers	 of	 two	 dielectrics	 (a)	 and
dependence	of	relative	dielectric	permittivity	on	coordinate	(b).

To	 determine	 the	 four	 constants	Ajl,	 one	 has	 to	 take	 into	 account	 the	 continuity	 of	 the
tangential	 components	 of	 electric	 and	 magnetic	 fields,	 that	 is,	 of	 the	 field	 E	 and	 its
derivative	dE/dx	at	the	interfaces.	Thus,	at	the	boundary	x	=	d1,	we	have

E1(x)=E2(x),     dE1(x)dx=dE2(x)dx. (8.50)

In	 addition	 to	 these	 boundary	 conditions,	 the	 solutions	 must	 satisfy	 the	 condition	 of
periodicity,	that	is,	the	fields	at	two	points	separated	by	one	period	(e.g.,	at	x	=	0	and	x	=	d)
can	differ	only	by	a	phase	factor



E1(0)=E2(d)exp(−ikBd), (8.51)

where	 the	wave	number	kB	 is	 called	 the	Bloch	wave	vector.	Equation	8.51	 is	 called	 the
Floquet–Bloch	 theorem	 (this	 theorem	was	 used	 by	Bloch	 for	 constructing	 the	 electron
wave	functions	in	a	periodic	crystal	lattice).

By	 substituting	 the	 fields	 given	 by	 Equation	 8.49	 into	 Equations	 8.50	 and	 8.51,	 we
obtain

A11e−ik1d1+A12eik1d1=A21e−ik2d1+A22eik2d1,k1(A11e
−ik1d1−A12eik1d1)=k2(A21e−ik2d1−A22eik2d1),A11+A22=e−ikBd(A21e

−ik2d+A22eik2d),k1(A11−A22)=e−ikBdk2(A21e−ik2d−A22eik2d).
(8.52)

This	is	a	system	of	four	linear	homogeneous	equations	for	the	unknown	amplitudes	of	the
waves	 propagating	 in	 the	 forward	 and	 backward	 direction:	 A11,	 A12,	 A21,	 and	 A22.	 A
nontrivial	(nonzero)	solution	of	this	system	exists	only	if	its	determinant	is	equal	to	zero,
that	is,

|	e−ik1d1eik1d1−e−ik2d1−eik2d1k1e−ik1d1−k1eik1d1−k2e−ik2d1k2eik2d111−ye
−ik2d−yeik2dk1−k1−k2ye−ik2dk2yeik2d	|=0, (8.53)

where	the	parameter	y	=	exp(−ikBd)	is	introduced.	Expanding	this	determinant,	we	obtain
the	quadratic	equation

y2−2Fy+1=0, (8.54)

where

F=cos(k1d1)cos(k2d2)−12(k1k2+k2k1)sin(k1d1)sin(k2d2).

For	the	roots	y1	and	y2	of	Equation	8.54,	we	have	y1y2	=	1,	 that	 is,	y1	=	exp(ikBd),	y2	=
exp(−ikBd),	and	y1	+	y2	=	2cos(kBd)	=	2F.	As	a	result,	we	obtain	the	dispersion	equation	of
the	structure	under	consideration,	which	relates	the	Bloch	wave	number	kB	with	the	known
quantities	k1	and	k2:

cos(kBd)=cos(k1d1)cos(k2d2)−12(k1k2+k2k1)sin(k1d1)sin(k2d2). (8.55)

The	case	|	cos(kBd)	|≤1	corresponds	to	a	transparency	band	of	the	structure.	If	|	cos(kBd)
|>1,	we	find	ourselves	in	an	opacity	band	(the	wave	number	kB	is	imaginary,	and	the	wave
decays	exponentially).

The	analysis	of	 the	dispersion	equation	(8.55)	 is	 rather	complicated,	so	we	consider	a
special	case,	assuming	k1d1	=	k2d2.	This	means	that	the	phase	of	the	propagating	wave	has
changed	in	each	layer	by	the	same	amount.	Then	Equation	8.55	takes	the	form

cos(kBd)=F(k1d1),   here		F(k1d1)=1−(k1+k2)22k1k2sin2 (k1d1). (8.56)



In	 Figure	 8.15a,	 the	 right-hand	 side	 of	 Equation	 8.56,	 that	 is,	 the	 function	 F(k1d1),	 is
presented.	The	points	of	intersection	of	this	function	with	the	line	F(k1d1)	=	−1	correspond
to	the	boundaries	of	the	nontransparency	bands,	which	are	shaded	in	this	figure.	In	these
ranges,	 cos(kBd)	 <	 −1,	 and	 thus,	 the	 effective	 Bloch	 wave	 number	 is	 imaginary	 that
indicates	the	opacity	of	the	periodic	structure.	Figure	8.15b	illustrates	the	dependence	of
the	wave	number	kB	on	the	magnitude	of	k1d1.	In	fact,	here,	a	type	of	the	dispersion	law	is
represented,	that	is,	the	dependence	of	kB	on	the	angular	frequency	ω,	since	k1=(ω/c0)κ1

Exercise	8.6

A	 wave	 with	 amplitude	 A0	 is	 incident	 normally	 from	 region	 x	 <	 0	 on	 a	 1D	 periodic
structure	whose	thickness	is	L	≫	d.	Using	Equations	8.40	and	8.38,	find	the	coefficients
of	reflection	and	transmission	of	the	structure.

Solution.	 The	 general	 solution	 of	 Equations	 8.40	 and	 8.38	 for	 the	 amplitudes	 of	 the
forward	and	backward	waves	can	be	written	in	the	form

A+(x)=[	C1exp(−βx)+C2exp(βx)	]exp(iξx),A−(x)=(4ikδ)[	−C1exp(−βx)+C2exp(βx)
]exp(−iξx),

FIGURE	8.15	Dependence	 of	 function	F(k1d1)	 (a)	 and	 the	wave	 number	 kB	 (b)	 on	 the
magnitude	of	k1d1.

where	 β=(kδ/4)2−ξ2	 and	 the	 constants	 of	 integration	 C1,2	 are	 determined	 from	 the
boundary	conditions.	Since	from	region	x	<	0,	the	wave	with	amplitude	A0	is	incident	on
periodic	structure,	then	at	x	=	0,	the	amplitude	of	the	forward	wave	is	equal	to	A+	(0)	=	A0.

In	order	 to	find	the	amplitude	of	 the	backward	wave,	 it	 is	necessary	that	at	x	=	L,	 the
condition	A−(L)	=	0	must	be	satisfied.	From	these	conditions,	we	get	the	following	system:

A+(0)=C1+C2=A0,A−(L)=−C1exp(−βL)+C2exp(βL)=0.

The	 solution	 of	 this	 system	 leads	 to	 the	 following	 expressions	 for	 the	 constants	 of
integration:

C1=exp(βL)2cosh(βL)A0,    C2=exp(−βL)2cosh(βL)A0.

After	the	substitution	of	these	expressions	into	the	solutions	of	Equation	8.38,	we	get

A+(x)=A0 exp(iξx)cosh[	β(L−x)	]cosh(βL),A−(x)=4A0kδexp(−iξx)sinh[	β(L−x)
]cosh(βL).



For	the	coefficients	of	transmission	and	reflection,	we	get

T=|	A+(L)A0	|=1cosh(βL),    R=|	A−(0)A0	|=4kδsinh(βL)cosh(βL).

8.7				PHOTONIC	CRYSTALS
Historically,	 the	 theory	 of	 scattering	 of	 electromagnetic	 waves	 by	 3D	 lattices	 began	 to
develop	rapidly	in	the	wavelength	range	λ	~	0.1–1	nm.	In	1986,	Eli	Yablonovich	from	the
University	of	California,	Los	Angeles,	proposed	the	idea	of	the	creation	of	a	3D	dielectric
structure,	 similar	 to	 normal	 crystals,	 in	 which	 electromagnetic	 waves	 in	 a	 particular
spectral	band	could	not	propagate.

Such	 systems	were	 called	 photonic	 structures	 and	 have	 a	 forbidden	 band	 (photonic
bandgap)	 in	 which	 electromagnetic	 waves	 cannot	 propagate.	Within	 a	 few	 years,	 such
structures	 were	 manufactured	 by	 drilling	 millimeter	 size	 holes	 in	 a	 material	 with	 high
refractive	index.	This	artificial	crystal,	which	did	not	transmit	radiation	in	the	millimeter
range,	was	the	first	realization	of	a	photonic	structure	with	a	forbidden	band.

As	 it	 was	 shown	 earlier,	 due	 to	 the	 periodic	 variation	 of	 the	 material	 parameters	 in
certain	structures,	it	is	possible	to	have	allowed	and	forbidden	frequency	intervals	(bands)
for	electromagnetic	waves.	A	similar	effect	occurs	in	crystalline	materials	where	allowed
and	forbidden	energy	bands	for	electrons	are	observed.	In	view	of	this	analogy,	materials
with	a	spatially	periodic	structure,	which	are	characterized	by	a	change	 in	 the	 refractive
index	on	a	scale	comparable	with	the	wavelengths	of	light	in	the	visible	and	near-infrared
range,	were	called	photonic	crystals.

The	main	property	of	photonic	crystals	is	the	presence	of	photonic	band	gaps	in	their
reflection	and	transmission	spectra.	If	a	wave	with	frequency	that	corresponds	to	the	band
gap	 is	 incident	 on	 a	 photonic	 crystal,	 the	 wave	 cannot	 propagate	 in	 this	 crystal	 and	 is
reflected	back.	If	the	frequency	of	the	incident	wave	corresponds	to	an	allowed	band,	then
it	may	propagate	through	the	photonic	crystal.	Thus,	the	photonic	crystal	acts	as	an	optical
filter	(generating	bright	colors	in	natural	and	artificial	photonic	crystals).

Based	on	 the	spatial	changes	of	 the	 refractive	 index,	photonic	crystals	can	be	divided
into	 three	 main	 classes:	 1D,	 2D,	 and	 3D	 photonic	 crystals,	 depending	 whether	 the
refractive	index	varies	periodically	in	one,	two,	or	three	spatial	directions.

One-dimensional	(1D)	photonic	crystals	consist	of	parallel	layers	of	various	materials
with	different	refractive	indices.	Schematically,	such	a	crystal	is	presented	in	Figure	8.16a.
The	symbol	d	denotes	 the	period	of	variation	of	 refractive	 indices	and	n1	and	n2	are	 the
refractive	 indices	 of	 the	 two	 materials	 (in	 the	 general	 case,	 one	 period	 may	 contain	 a
greater	number	of	layers	of	different	materials).

Figure	8.16b	shows	a	photonic	crystal	that	consists	of	rectangular	areas	with	refractive
index	 n1,	 which	 are	 embedded	 in	 a	 medium	 with	 refractive	 index	 n2.	 The	 areas	 with
refractive	 index	 n1	 can	 be	 arranged	 in	 the	 following	 2D	 lattices:	 oblique,	 square,
hexagonal,	primitive	rectangular,	and	centered	rectangular.	The	shape	areas	with	refractive
index	n1	is	not	limited	to	rectangles	but	can	have	any	shape	(triangles,	circles,	etc.).

Three-dimensional	 (3D)	 photonic	 crystals	 are	 formed	 by	 arrays	 of	 volume	 areas
(spheres,	cubes,	etc.)	arranged	in	the	form	of	a	3D	lattice.



One	of	 the	first	 important	practical	applications	of	1D	photonic	crystals	 is	 in	coatings
that	 reduce	reflection.	Photonic	crystals	are	high-performance	spectral	 filters	 that	 reduce
reflection	from	optical	elements	in	a	desirable	interval	of	frequencies.

Another	well-known	 example	 of	 1D	photonic	 structures	 is	 semiconductor	 lasers	with
distributed	feedback	as	well	as	optical	waveguides	with	a	periodic	longitudinal	modulation
of	the	physical	parameters	(a	profile	of	a	refractive	index).

Since	photonic	crystals	have	controllable	photonic	bands,	they	are	often	considered	as
the	 optical	 analogs	 of	 crystalline	 materials	 and	 in	 particular	 semiconductors.	 Photonic
crystals	may	 become	 the	 basis	 of	 new	 devices	 for	 optical	 transmission	 and	 information
processing.	 Lasers	 based	 on	 photonic	 crystals	 allow	 for	 realizing	 small-signal	 laser
generators,	 the	 so-called	 low-threshold	 and	 nonthreshold	 lasers.	 Waveguides	 based	 on
photonic	crystals	can	be	very	compact	and	have	low	losses.	By	using	photonic	crystals,	it
is	possible	to	create	“left-hand”	media	possessing	negative	refractive	indices,	which	allow
focusing	light	to	a	point	with	size	less	than	the	wavelength.

FIGURE	8.16	1D	(a)	and	2D	(b)	photonic	crystals	show	their	properties	in	the	two	spatial
directions.

Exercise	8.7

Show	that	 in	an	 infinite	3D	photonic	crystal	 in	 the	absence	of	absorption,	 the	 following
relation	is	valid	for	the	electric	field	of	a	wave	that	propagates	through	the	crystal:

E(r+dn)=E(r)exp(ikB⋅dn),
where

dn	=	n1d1	+	n2d2	+	n3d3	is	a	translation	vector	(which	connects	two	identical	points	in
different	crystalline	cells)
di	are	the	periods	of	the	structure	along	the	coordinate	axes
ni	are	integers
kB	is	Bloch’s	wave	vector

Solution.	 In	 a	 photonic	 crystal,	 all	 material	 parameters	 are	 periodic.	 Thus,	 for	 the
dielectric	permittivity,	we	can	write	ε(r	+	dn)	=	ε(r),	which	means	that	points	r	and	r	+	dn
are	 physically	 equivalent.	 From	 the	 last	 statement,	 it	 follows	 that	 the	 electric	 field	 of	 a
wave	at	these	points,	E(r)	and	E(r	+	dn),	must	be	proportional	to	each	other,	that	is,

E(r+dn)=CE(r).

The	constant	of	proportionality	must	depend	on	the	translation	vector	dn	and	at	the	same



time	must	not	change	the	amplitude	of	the	field,	that	is,

C=C(dn),     |	C(dn)	|=1.

Going	from	point	r	to	point	r	+	dn	can	be	accomplished	by	a	direct	translation	by	vector
dn	or	by	two	consecutive	translations	by	vectors	dm	and	dl	which	satisfy	the	condition	dn
=	dm	+	dl	that	is,

          E(r+dl)=C(dl)E(r),E(r+dl+dm)=C(dm)E(r+dl)=C(dm)C(dl)E(r),          
E(r+dn)=C(dm)C(dl)E(r)=C(dn)E(r).

From	the	last	expressions,	we	get	the	coefficients	C	that	satisfy	the	condition

C(dn)=C(dm)C(dl).

This	property	 is	characteristic	for	 the	exponential	 function	C(dn)	=	exp(i	b	⋅	dn),	whose
exponential	coefficient	must	be	a	dimensionless	quantity.	This	implies	that	vector	b	must
have	 the	 dimension	 of	 inverse	 length	 (m−1).	As	kB	 =	 2π/λ,	 the	 translation	 by	 vector	dn
leads	to	 the	multiplication	of	function	E(r)	by	the	phase	factor	exp(ikBdn)	in	a	photonic
crystal.

PROBLEMS
8.1	 A	monochromatic	 plane	wave	 propagates	 along	 the	 z-axis	 and	 is	 incident
normally	 on	 an	 opaque	 screen	 with	 a	 circular	 aperture	 of	 radius	 r0.	 The
diffraction	 pattern	 is	 observed	 at	 a	 point	P	 directly	 behind	 the	 aperture,	 at	 a
distance	L	 from	 the	aperture	on	a	 line	 that	 is	normal	 to	 the	screen	 (see	Figure
8.3).	Determine	the	number	of	Fresnel	zones,	which	fit	the	aperture.	Show	that
the	 areas	 of	 all	 zones	 are	 equal.	 (Answer:	 The	 number	 of	 Fresnel	 zones	 is
m=r02λ/L
8.2	A	plane	wave	is	 incident	normally	on	a	circular	aperture	of	radius	r0	 in	an
opaque	 screen.	 Determine	 the	 changes	 in	 the	 intensity	 of	 the	 light	 diffracted
along	the	z-axis	behind	the	screen	and	indicated	regions	along	the	z-axis	where
the	Fresnel,	Fraunhofer,	and	geometrical	optics	diffractions	are	realized.	(Part	of
the	answer	is	shown	in	Figure	8.17.)
8.3	A	green	light	beam	of	wavelength	λ	=	0.55	μm	is	incident	normally	upon	a
narrow	slit	of	width	b	=	40.0	μm.	Determine	 the	angles	of	 the	first	 two	bright
diffraction	 fringes	 that	 are	 observed	on	 the	 screen	with	 respect	 to	 the	 original
direction	of	the	light.	(Answer:	φ1	=	±1.20°,	φ2	=	±2.00°.)
8.4	A	beam	of	light	with	wavelength	of	λ	=	0.50	μm	is	incident	normally	upon	a
slit	of	width	b	=	100	μm.	A	diffraction	pattern	 is	observed	on	a	 screen	 that	 is
parallel	 to	 the	 slit	 plane.	 Determine	 the	 distance	 l	 between	 the	 slit	 and	 the
screen,	 if	 the	width	of	 the	central	diffraction	maximum	d	 is	 equal	 to	1.00	cm.
(Answer:	l	=	100	cm.)
8.5	 A	 monochromatic	 light	 beam	 of	 wavelength	 λ	 =	 0.50	 μm	 is	 incident
normally	upon	a	diffraction	grating.	A	screen	is	located	parallel	to	the	grating	at
a	 distance	 L	 =	 1.00	 m	 from	 the	 grating	 (see	 Figure	 8.18).	 The	 distance	 Δx
between	 the	 first-order	diffraction	maxima	 is	 equal	 to	10.0	 cm.	Determine	 the



period	 of	 the	 grating	 d	 and	 the	 total	 number	 of	 main	 diffraction	 maxima
obtained	by	this	grating.	(Answer:	d	=	10−5	m,	N	=	41.)
8.6	 A	 monochromatic	 light	 beam	 of	 wavelength	 of	 λ	 =	 0.60	 μm	 is	 incident
normally	 upon	 a	 diffraction	 grating.	 Determine	 the	 highest-order	 diffraction
maxima,	which	can	be	obtained	by	this	grating	if	its	grating	period	d	is	equal	to
2.00	μm.	(Answer:	nmax	=	3.)
8.7	Determine	the	distance	d	between	atomic	planes	in	a	rock	salt	crystal	if	the
first-order	X-ray	diffraction	maximum	is	observed	at	an	angle	φ	=	15°12′	to	the
crystal’s	surface.	The	X-rays’	wavelength	λ	is	equal	to	0.147	nm.	(Answer:	d	=
0.282	nm.)

FIGURE	8.17	Dependence	of	the	diffracted	light	intensity	of	a	wave	on	the	distance	from
the	aperture	on	the	z-axis.

FIGURE	8.18	Schematic	of	the	diffraction	pattern	of	monochromatic	light.

8.8	A	narrow	beam	of	 neutrons	 that	 have	 the	 same	 energy	 is	 reflected	 from	a
natural	facet	of	an	aluminum	single	crystal	at	a	glancing	angle	θ	=	5°	(see	Figure
8.12).	The	distance	between	the	atomic	planes	parallel	of	this	facet	of	the	single
crystal	 is	 equal	 to	 d	 =	 0.20	 nm.	What	 are	 the	 energy	 and	 the	 velocity	 of	 the
neutrons	 that	 generate	 a	 first-order	 maximum?	 Hint:	 Use	 the	 notion	 from
quantum	 physics	 that	 particles	 have	 wave	 properties.	 The	 behavior	 of	 such
particles	is	described	by	their	de	Broglie	wavelength	given	by

λB=hmv=h2mEkin,

where	h	 =	 6.62	 ×	 10−34	 J	 s	 is	 Planck’s	 constant,	m	 =	 1.67	 ×	 10−27	 kg	 is	 the
neutron	mass,	and	v	is	the	neutron	velocity.	(Answer:	Ekin	=	1.08	×	10−19	J,	v	=
1.13	×	104	m/s.)
8.9	A	monochromatic	plane	wave	is	incident	upon	a	1D	periodic	structure	with	a
period	 d,	 which	 occupies	 a	 region	 0	 <	 x	 <	 L.	 Obtain	 expressions	 for	 the
reflectance	 and	 transmittance	 coefficients	with	 the	 assumption	 that	 the	 phase-
matching	conditions	are	satisfied	between	 the	 forward	and	backward	waves	 in



the	medium	 and	 that	 in	 the	 inlet	 boundary	 layer	 (x	 =	 0)	 the	 amplitude	 of	 the
wave	is	equal	to	A0.
8.10	Using	relation	(8.55)	for	a	plane	periodic	structure,	obtain	an	expression	for
the	effective	refractive	index	of	the	structure	for	the	case	λ	≫	d,	where	λ	is	the
wavelength	of	an	electromagnetic	wave	and	d	is	the	period	of	the	structure.	This
approach	is	sometimes	called	the	effective	medium	approximation.	Hint:	As	d≪
λ,	 then	 for	 the	 layer	 thicknesses	 dj	 and	 d2,	 we	 have	 d1	≪	 λ	 and	 d2	≪	 λ.
(Answer:(kBd)2=(k1d1)2+(k2d2)2+(k1k2+k2k1)(k1d1)(k2d2), k1,k2 
are	wave	numbers	in	each	of	the	media	and	neff=n1d1+n2d2d1+d2=n1+n2θ1+θ.)



9Waves	in	Guiding	Structures
Guided	waves	in	contrast	to	freely	propagating	waves	in	space	may	exist	only	in	guided
structures.	The	set	of	guiding	elements	 forms	a	guided	system.	Guided	systems	are	also
called	lines	for	energy	transmission.	A	structure	is	considered	guided	 if	 it	provides	local
transmission	of	electromagnetic	field	energy	in	a	desired	direction.	Such	structure	is	also
called	a	transmission	line	or	a	waveguide.	Most	of	super-high-frequency	(SHF)	elements
and	units	of	radio	equipment	are	based	on	segments	of	transmission	lines.	Such	structures
are	 used	 as	 channels	 to	 direct	 and	 deliver	 electromagnetic	 energy	 from	 the	 source	 to	 a
device	 (e.g.,	 from	a	generator	 to	 a	 transmitting	 antenna,	 from	a	 receiving	 antenna	 to	 an
amplifier).	A	rectangular	guided	structure	with	constant	cross	section	is	named	a	regular
guided	structure.	If	one	of	these	properties	is	not	satisfied	(e.g.,	if	the	cross	section	is	not
rectangular	or	the	cross	section	is	variable),	the	transmission	line	is	called	irregular.

Widely	used	transmission	lines	such	as	cable	and	optical	fibers	are	also	considered	to	be
guided	structures.	Cables	consisting	of	twisted	pairs	of	copper	wires,	coaxial	cables,	and
optical	 fibers	 are	 heavily	 used	 in	 computers	 and	 computer	 networks.	 An	 optical	 fiber
consists	 of	 a	 flexible	 glass	 fiber—that	 is,	 optical	 waveguide	 (its	 diameter	 for	 different
applications	 is	 in	 the	 range	of	5	–	100	μm)—and	 is	used	 to	 transmit	optical	 signals.	An
optical	 fiber	 is	 the	 fastest	 transmission	 line	 (10	Gb/s	 and	higher),	 and	 it	 has	 the	highest
quality	of	data	transmission	as	the	signal	is	protected	from	external	noise.	Further,	we	will
consider	several	types	of	guided	structures	used	from	SHF	range	to	optical	range.

9.1				TYPES	OF	GUIDING	STRUCTURES
For	waves	of	different	frequency	ranges,	there	are	various	types	of	transmission	lines.

The	main	ones	are

•	Rectangular	and	cylindrical	hollow	waveguides
•	Two-wire,	stripline,	and	coaxial	transmission	lines
•	Planar	and	fiber	optical	waveguides

The	centimeter	waves—wavelength	from	1	to	10	cm	(or	frequency	from	3	to	30	GHz)—
are	 assigned	 to	 the	 range	 of	 ultrahigh	 frequencies	 (UHFs).	 However,	 in	 practice,	 it	 is
accepted	to	extend	the	microwave	range	to	wider	spectrum	part,	which	includes	decimeter,
centimeter,	and	millimeter	waves.

The	spectrum	of	electromagnetic	wave	is	given	in	Figure	9.1,	and	 it	 is	specified	what
types	of	transmission	lines	are	reasonable	to	apply	on	its	different	intervals.

Further,	we	will	 pay	our	 attention	mainly	 to	 the	 study	of	waves	 in	 ideal	 transmission
lines	 filled	 with	 homogeneous	 medium	 with	 constant	 (independent	 on	 coordinates)
permittivity	ε	and	permeability	μ.	Generally,	 in	such	 lines,	waves	of	 the	 following	 three
types	can	propagate	independently	from	each	other:

•	 Transverse	 electromagnetic	 (TEM)	 waves,	 in	 which	 the	 longitudinal



components	 of	 the	 electric	 and	 magnetic	 fields	 are	 equal	 to	 zero	 and	 the
propagation	 constant	 coincides	with	 the	wave	 number	 in	 the	medium,	 that	 is,
β=ωκε0κmμ0=(ω/c)κκm
•	Transverse	electric	(TE)	waves,	in	which	the	electric	field	is	perpendicular	to
the	 direction	 of	 propagation	 and	 the	 magnetic	 field	 has	 both	 transverse	 and
longitudinal	components
•	Transverse	magnetic	(TM)	waves,	in	which	only	the	electric	field	vector	has	a
longitudinal	component

FIGURE	9.1	The	spectrum	of	electromagnetic	waves	(a)	and	types	of	transmission	lines
(b)	used	in	different	spectral	intervals.

In	transmission	lines	with	inhomogeneous	filling	(with	parameters	ε	and	μ	depending	on
coordinate),	only	hybrid	waves	can	exist.	For	these	waves,	the	longitudinal	components	of
both	fields	are	nonzero.	In	general,	 transmission	lines	are	systems	of	parallel	metallic	or
dielectric	layers,	wires,	rods,	or	tubes.	In	the	radio	and	microwave	ranges	of	wavelengths
(with	λ	>	1	mm),	homogeneous	lines	are	most	widely	used.	The	space	between	conductors
can	be	empty	or	filled	with	a	medium.

By	the	nature	of	spatial	localization	of	the	electromagnetic	field,	the	transmission	lines
are	divided	 into	open	 and	closed.	 In	 open	 lines,	 there	 is	 no	 external	metal	 shell,	which
confines	the	area	of	the	field.	The	lines,	in	which	the	area	of	nonzero	field	is	confined	by
an	external	closed	metal	shell,	are	called	closed	or	screened.	This	shell	is	a	metal	pipe	that
the	fields	do	not	penetrate.	Examples	of	such	 lines	are	metal	 rectangular	and	cylindrical
waveguides	and	coaxial	lines—cylindrical	waveguide	with	a	metal	rod	enclosed	in	it.

Cross	sections	of	applied	transmission	lines	are	given	in	Figure	9.2.	The	simplest	open
transmission	 lines	 are	 single-wire,	 two-wire,	 and	 stripline	 transmission	 lines.	Such	 lines
are	used	in	meter	(MW)	and	even	longer	wavelength	ranges.	At	shorter	wavelengths,	the
radiation	losses	significantly	increase	in	two-wire	lines.	Therefore,	in	the	decimeter	range,
closed	transmission	lines	are	used.

The	 guiding	 of	 energy	 at	 ultrahigh	 frequencies	 (UHFs)	 by	 the	 usual	 two-wire
transmission	lines	is	almost	impossible	due	to	the	following:

1.	The	transverse	dimensions	of	the	two-wire	transmission	lines	are	comparable
with	 the	 wavelength.	 Thus,	 the	 lines	 play	 the	 role	 of	 antennas—instead	 of
transmitting	energy,	they	emit	it	in	the	space.
2.	Due	 to	 the	pronounced	skin	effect,	 the	ohmic	resistance	of	 the	 line	wires	 in
the	 microwave	 range	 is	 so	 large	 that	 a	 considerable	 part	 of	 the	 energy	 is
dissipated	by	heating	the	wires.

Striplines	are	widely	used	in	microelectronics	because	they	reduce	the	sizes	and	weight	of



the	 transmission	 lines	 significantly	 although	 the	 heat	 and	 radiation	 losses	 somewhat
increase.

In	 the	 decimeter	 and	 centimeter	 wavelength	 ranges,	 the	 guiding	 of	 radio	 waves	 is
carried	out	by	means	of	waveguides	and	coaxial	cables.	Waveguide	is	a	hollow	metal	pipe
with	 constant	 cross	 section	 filled	 with	 an	 ideal	 dielectric	 or	 air.	Waveguides	 allow	 the
transmission	of	high	power	with	low	radiation	and	heat	losses.	For	decimeter	and	waves	of
longer	wavelengths,	it	is	reasonable	to	use	coaxial	transmission	lines	(coaxial	cables).	The
use	of	coaxial	cable	for	guiding	UHF	waves	is	unprofitable.	Though	in	this	case	no	energy
is	emitted	in	the	surrounding	(as	a	cable	shell	at	the	same	time	is	also	a	screen),	the	power
losses	 in	 the	 core	 and	 dielectric	 washers	 (by	means	 of	 which	 the	 core	 is	 attached	 in	 a
cable)	are	great.	 In	 the	millimeter	wavelength	range,	dielectric	waveguides	made	from	a
solid	dielectric,	such	as	polystyrene,	without	metal	walls	are	used.	The	use	of	waveguides
at	 longer	 wavelengths	 is	 impractical	 because	 of	 the	 large	 transverse	 dimensions	 of	 the
waveguides,	as	the	latter	are	always	commensurable	with	the	wavelength.

FIGURE	9.2	Cross	sections	of	transmission	lines:	two-wire	line	(a),	dielectric	waveguide
(b),	stripline	(c),	screened	two-wire	 line	(d),	coaxial	 line	(e),	single-wire	 line	(f),	shaped
waveguide	(g),	and	rectangular	waveguide	(h).

The	main	 requirements	 for	 a	 transmission	 line	 are	 high	 efficiency,	 low	 losses	 in	 the
conductor	 and	 insulator,	 small	 reflections,	 sufficient	 electric	 strength	 for	 transmitting
power,	broadband	 response,	 absence	of	noticeable	amplitude	and	phase	distortion	 in	 the
operating	frequency	range,	and	absence	of	radiation	into	the	surroundings.	In	addition,	the
line	must	have	small	dimensions	in	combination	with	simplicity	of	design	and	operation
and	also	if	it	is	necessary	to	possess	a	sufficient	rigidity	and	vibration	resistance.

Exercise	9.1
Determine	 the	 energy	 transferred	 by	 a	 plane	 monochromatic	 wave	 during	 time	 T	 (one
period)	 through	an	area	A,	which	 is	perpendicular	 to	 the	direction	of	wave	propagation.



The	wave	propagates	in	free	space	(vacuum).	The	amplitude	of	the	wave’s	electric	field	is
equal	to	E0	and	its	angular	frequency	is	ω.

Solution.	The	power	density,	that	is,	the	amount	of	energy	transported	by	a	wave	during
unit	time	through	a	unit	area	that	is	perpendicular	to	the	direction	of	the	wave	propagation,
is	 given	 by	 the	 Poynting	 vector	S	 =	E	 ×	H,	 where	E	 and	H	 are	 the	 electric	 field	 and
magnetic	 field	 intensity,	 respectively.	 Taking	 into	 account	 that	 E⊥H,	 we	 get	 for	 the
magnitude	of	the	Poynting	vector	S	=	E	⋅	H.	Since	the	magnitudes	of	vectors	E	and	H	at
each	 point	 of	 electromagnetic	 wave	 vary	 with	 time	 and	 the	 two	 fields	 have	 the	 same
phase,	the	instantaneous	value	of	S	is	equal	to

S(t)=E0 sinωt⋅H0 sinωt=E0H0sin2 ωt.
Thus,	we	have

S(t)=1AdWdt,

where	dW	is	the	energy	transported	by	the	wave	through	the	area	A	during	time	dt.	From
the	aforementioned	relationships,	it	follows	that

dW=SA dt=E0H0sin2 ωt⋅Adt.
In	order	to	find	dW,	it	is	necessary	to	know	the	magnitude	H0,	which	we	can	find	from	the
relationship

κε0E022=κmμ0H022,  H0=κε0κmμ0E0.

For	vacuum	κ=κm=1,	and	therefore,	H0=ε0/μ0E0.	As	a	result,	we	get

dW=ε0μ0E02sin2 ωt⋅A dt.
The	energy	transferred	by	the	wave	during	time	T	is	equal	to

W=ε0μ0AE02∫0Tsin2ωt⋅dt=ε0μ0AE02(T2−sin 2ωT4ω)=ε0μ0AE02T2
since	ωT	=	2π	and	sin	4π	=	0.

9.2				FIELD	STRUCTURE	OVER	THE	CONDUCTING
PLANE

In	 transmission	 lines,	 the	 fields	 of	monochromatic	waves	 are	 usually	 represented	 as	 the
real	parts	of	complex	expressions	of	the	forms

E(r⊥,z,t)=E(r⊥)exp[	i(ωt−βz)	],H(r⊥,z,t)=H(r⊥)exp[	i(ωt−βz)	], (9.1)

where

z	is	the	longitudinal	coordinate	along	the	transmission	line
r⊥	is	the	2D	radius	vector	in	the	plane	of	cross	section	at	z	=	const
ω	and	β	are	the	angular	frequency	and	wave	propagation	constant

The	 propagation	 constant	 is	 a	 real	 number	 if	 there	 is	 no	 absorption	 of	 the	wave	 by	 the
transmission	 line.	 In	 this	 case,	 waves	 described	 by	 Equations	 9.1	 satisfy	 Maxwell’s
equations	and	the	boundary	conditions	on	the	walls	of	the	transmission	line.	These	waves



are	called	modes	of	the	waveguide.

Guiding	structures	are	characterized	by	permittivity	εa=ε0κ	and	permeability	μa=μ0κm
of	 its	material.	Here,	 ε0=(1/36π)×10−9F/m	 and	 μ0 = 4π × 10−7 H/m	 are	 the	 electric	 and
magnetic	 constants,	 and	 κ	 and	 κm	 are	 the	 relative	 dielectric	 permittivity	 and	 magnetic
permeability	 of	 the	 medium.	 Let	 us	 remind	 that	 constants	 ε0	 and	 μ0	 determine	 two
important	 parameters:	 the	 speed	 of	 light	 in	 vacuum,	 c=1/ε0μ0=3×108 m/s,	 and	 the
impedances	of	vacuum,	Z0=E/H=μ0/ε0=120πΩ≈377Ω  and Za=μa/εa=Z0κm/κ.

To	 localize	 the	 electromagnetic	 field	 and	 to	 guide	 waves,	 metal	 planes	 of	 various
configurations	are	used.	Consider	the	field	pattern	arising	near	a	highly	conducting	metal
plane	when	a	plane	wave	is	incident	on	it.	When	a	plane	wave	is	incident	on	an	ideal	(not
absorbing)	metal	surface,	 there	 is	 its	 total	 reflection.	Since	 the	fields	of	 the	 incident	and
reflected	waves	at	the	same	point	in	space	have	different	phases	and	different	directions,
the	 resultant	 field	 has	 a	 rather	 complex	 structure	 that	 differs	 considerably	 from	 the
structure	 of	 the	 incident	 and	 reflected	waves.	 If	 a	 plane	 homogeneous	wave	 is	 incident
obliquely	on	 the	 interface,	 it	 is	 totally	reflected,	and	 the	reflected	wave	carries	 the	same
energy	as	the	incident	wave.

Figure	9.3	shows	a	vector	diagram,	 in	which	 the	Poynting	vectors	of	 the	 incident	and
reflected	waves	(Si	and	Sr)	are	decomposed	onto	normal	(Sni,Snr)	and	tangential	(Sti,Str)
components	relative	to	the	interface.	Since	the	tangential	components	of	the	incident	and
reflected	 waves	 are	 added	 and	 the	 normal	 components	 cancel	 each	 other,	 the	 flow	 of
energy	 occurs	 along	 the	 interface.	 Thus,	 a	 wave	 process	 guided	 by	 a	 metal	 surface	 is
realized.

Depending	on	polarization,	the	electric	vector	of	the	incident	wave	Ei	can	be	variously
oriented	relative	to	a	plane	of	incidence.	Let	us	consider	two	cases	of	polarization	of	the
incident	wave:	(1)	vector	Ei	is	perpendicular	to	the	plane	of	incidence	(s-polarization)	and
(2)	vector	Ei	lies	in	the	plane	of	incidence	(p-polarization).

For	s-polarization	of	the	incident	and	reflected	waves,	the	instantaneous	picture	of	the
distribution	of	 electric	 and	magnetic	 field	 lines	near	 a	metal	 surface	 is	 shown	 in	Figure
9.4.	The	picture	of	field	lines	moves	along	the	metal	plane	from	left	to	right	with	a	wave
phase	velocity	vph.	The	electric	field	E	moves	along	the	interface	and	possesses	only	the
components,	 which	 are	 transverse	 in	 relation	 to	 the	 propagation	 direction.	 Field	 H
possesses	 a	 longitudinal	 component	 (Hz≠0,Ez=0).	 Such	 wave	 is	 called	 the	 wave	 of
magnetic	type	and	is	designated	as	“TE”	or	“H.”

Figure	9.5	shows	a	diagram	of	the	intersection	of	the	fronts	of	the	incident	and	reflected
waves.	If	we	choose	the	section	of	the	front	of	the	incident	plane	wave,	which	is	equal	to
the	wavelength,	from	the	drawing,	it	is	possible	to	find	the	characteristic	sizes	determining
the	height	and	width	of	the	contours	of	the	closed	field	lines:

l=λ2cosθi,  d=λ2sinθi. (9.2)



FIGURE	9.3	Energy	flows	near	a	metal	surface:	vector	Ei	is	perpendicular	to	the	plane	of
incidence	(s-polarization)	(a)	and	vector	Ei	lies	in	the	plane	of	incidence	(p-polarization)
(b).

FIGURE	9.4	 Character	 of	magnetic	 field	 intensity	 and	 electric	 field	 lines	 near	 a	metal
surface	with	s-polar-

FIGURE	9.5	Crossing	of	the	fronts	of	incident	and	reflected	waves.

Thus,	 the	 size	 of	 contours	 of	 the	 electric	 and	magnetic	 field	 lines	 is	 determined	 by	 the
wavelength	λ	and	the	angle	incidence	θi	of	the	plane	wave	with	the	metal	plane.

Figure	9.6	 shows	 the	 character	 of	 the	 electric	 field	 and	magnetic	 field	 intensity	 lines
near	 a	metal	 surface	 for	 p-polarization	 of	 the	wave.	 In	 this	 case,	 the	 vector	E	 lies	 in	 a
plane	 of	 incidence	 and	 the	 vector	H	 is	 perpendicular	 to	 this	 plane.	 Thus,	 the	 boundary
condition	Et	=	0	has	to	be	satisfied.

The	 wave	 field	 moves	 along	 the	 interface	 and	 has	 only	 a	 component,	 which	 is
transverse	 in	 relation	 to	 the	 propagation	 direction	 of	 the	magnetic	 field	H.	 The	 electric
field	E	has	both	transverse	and	longitudinal	components	coinciding	in	direction	with	the
vector	of	phase	velocity	(Hz=0,Ez≠0).	Such	wave	is	called	wave	of	the	electric	type	and
designate	either	“TM”	or	“E.”

We	note	that	the	field	in	the	direction	of	the	normal	to	the	interface	has	the	structure	of	a
standing	wave	with	nodes	and	antinodes	 for	 the	electric	and	magnetic	 fields.	Therefore,
transfer	 of	 the	 field	 energy	 in	 this	 direction	 is	 absent	 and	 takes	 place	 only	 along	 the
boundary.

Exercise	9.2
A	plane	monochromatic	wave	with	 s-polarization	 is	 incident	 at	 an	 angle	 θ	 on	 the	 plane



surface	of	a	metal	with	conductivity	σ.	Find	the	specific	power	loss,	that	is,	the	part	of	the
wave’s	energy	that	is	absorbed	by	the	metal	per	unit	surface.

Solution.	To	find	the	absorbed	energy,	it	is	necessary	to	calculate	the	average	value	of	the
Poynting	 vector	 directed	 into	 the	metal.	 If	 the	 electric	 and	magnetic	 fields	 at	 the	metal
surface	are	known,	then

<S>=12Re(Et×Ht∗),

FIGURE	 9.6	 Character	 of	 magnetic	 field	 intensity	 and	 electric	 field	 lines	 near	 metal
surface	for	p-polarization	of	wave.

where	Et	and	Ht	are	tangential	components	of	the	fields	at	the	metal’s	surface.	Let	us	use
Leontovich	boundary	condition	(7.24)

Et=Zm(Ht×n0),

where	the	metal	complex	impedance	has	the	form

Zm=κmμ0κ˜ε0=−κmμ0ωiσ=(1+i)κmμ0ω2σ,

and	n0	 is	 a	 unit	 vector	 normal	 to	 the	 metal	 surface	 (directed	 toward	 the	 metal).	 After
substitution	of	these	relationships,	we	get

<S>=12Re(Zm(Ht×n0)×Ht*)=n02|	Ht	|2ReZm.

Since	ReZm=κmμ0ω/2σ,	then	for	specific	power	losses,	we	get

P=12κmμ0ω2σ|	Ht	|2.

As	Ht	=	H0	cosθ,	where	H0	is	the	amplitude	of	the	incident	wave,	then

P=κmμ0ω8σ|	H0	|2cos2 θ.

For	 a	 nonmagnetic	metal,	 the	magnetic	 permeability	 κm	 is	 equal	 to	 unity.	 For	 an	 ideal
metal,	σ	→	∞,	so	the	power	losses	in	the	case	of	ideal	metal	become	zero:	P	→	0.

9.3				FIELD	BETWEEN	TWO	PARALLEL	METAL
PLANES

Propagation	of	electromagnetic	energy	is	also	possible	between	two	parallel	metal	planes.
Now,	we	explore	the	conditions	under	which	such	propagation	occurs.	Let	us	place	above
the	 first	 metal	 plane	 a	 second	 ideal	 metal	 plane	 so	 as	 not	 to	 disturb	 the	 existing	 field
pattern.	For	this	purpose,	the	second	plane	should	be	placed	at	a	distance	a	=	nl,	where	n	=
1,	2,	3,	….	Thus,	the	field	pattern	between	the	two	planes	is	the	same	as	in	the	case	of	a
single	plane.	The	wave	field	E	will	be	oriented	normally	to	the	metal	planes	and	the	field
H	tangentially.



A	wave	of	this	kind	possesses	only	one	variation	of	a	field	in	the	direction	perpendicular
to	the	planes.	In	the	case	of	s-polarization	and	n	=	1,	the	wave	is	called	a	wave	H1,	and	in
the	case	of	p-polarization,	a	wave	E1.	The	picture	of	field	lines	of	these	waves	is	shown	in
Figure	9.7.

Equation	9.2	related	the	distances	between	the	metal	planes	and	the	angle	of	incidence
θi:

a=nl=nλ2cosθi. (9.3)

FIGURE	9.7	Field	picture	for	waves	of	types	H1	and	E1.

For	the	existence	of	a	higher	type	of	wave,	for	example,	with	n	=	2	at	a	fixed	angle	θi,	it	is
necessary	 to	 increase	 the	distance	between	 the	planes	by	a	 factor	of	 two.	The	minimum
distance,	a,	 at	which	a	wave	with	n	=	1	 is	possible,	 is	 equal	 to	λ/2.	Thus,	 a	uniqueness
condition	of	a	wave	with	n	=	1	is	λ/2<a<λ.	Waves	with	larger	indices	cannot	propagate	in
this	case	between	two	planes.	For	λ<a<3λ/2,	between	the	planes,	there	is	a	wave	with	n	=
2,	and	the	wave	with	n	=	3	does	not	exist.	However,	at	the	same	time,	a	wave	with	n	=	1,
which	 is	 called	 the	 fundamental	 wave,	 can	 exist.	 By	 suitable	 choice	 of	 the	 distance
between	the	planes,	it	is	possible	to	provide	the	conditions	for	a	single-wave	distribution
mode	for	a	wave	of	the	fundamental	type.

The	field	 in	a	 two-plane	waveguide	can	be	considered	as	 the	 result	of	 the	addition	of
plane	uniform	waves	called	partial	waves	 reflected	multiply	 from	its	boundary	surfaces.
The	 propagation	 constant,	 phase,	 and	 group	 velocities	 and	 the	 wavelength	 of	 such
waveguide	(as	well	as	for	the	free	space)	are	related	to	each	other:	β=ωεaμa=ωε0μ0κκm=
(ω/c)κκm=ω/v0.

For	an	incident	wave,	that	is,	a	wave	in	free	space	with	propagation	direction	along	the
axis	z1,	this	relationship	has	the	following	form:

vph=ωβ=v0,  vgr=∂ω∂β=v0,  λ=2πβ=v0f=2πv0ω, (9.4)

where	v0=c/κκm	is	the	propagation	velocity	of	the	wave	in	the	medium	(Figure	9.8).



FIGURE	9.8	Phase	and	group	velocities	and	a	wavelength.

In	a	waveguide,	the	parameters	of	a	plane	wave	propagating	along	the	waveguide	axis
(i.e.,	along	the	z-axis)	are	given	by

βz=βsinθi,  vphz=v0sinθi,  vgrz=v0 sinθi,  λz=λsinθi=vphzf. (9.5)

From	this,	it	follows	that	the	wavelength	in	the	waveguide	λw	=	λz	is	greater	than	λ	in	free
space	for	the	same	oscillation	frequency	and	vphz>v0, vgrz<v0.

Let	 us	write	 the	 condition	 of	wave	 propagation	 in	 two-plane	waveguide.	At	 constant
values	of	the	parameters	a	and	n	(n	is	the	number	of	half-waves	that	fit	the	size	of	a),	the
angle	of	incidence	of	the	partial	wave	depends	on	λ:

cosθi=ωcrω=λλcr=nλ2a. (9.6)

If	 λ≪λcr=2a/n,	 then	 the	 angle	 θi	 is	 close	 to	 90°	 and	 the	 partial	 waves	 upon	 reflection
move	along	 the	waveguide	walls	 (Figure	9.9).	With	 increasing	λ,	 the	 angle	θi	 decreases
and	 becomes	 equal	 to	 zero,	 that	 is,	 the	 wave	 propagation	 stops.	 Thus,	 the	 transverse
dimension	of	the	waveguide	restricts	the	wavelength	range	of	waves	that	can	propagate	in
it	by	the	following	relation:

λ≤λcr=2an. (9.7)

The	 upper	 limit	 of	 the	 range	 in	 which	 a	 wave	 of	 a	 given	 type	 can	 propagate	 in	 a
waveguide	 is	called	 the	critical	wavelength	λcr.	 In	a	waveguide,	propagation	 is	possible
only	for	waves	with	wavelength	λ	<	λcr,	frequency	ω	>	ωcr,	and	angle	of	incidence

sinθi<1−(ωcrω)2=1−(λλcr)2. (9.8)

Note	that	at	λ	=	λcr	 the	group	velocity	of	 the	wave	in	the	waveguide	tends	to	zero.	This
shows	that	in	a	waveguide	a	wave	with	λ	>	λcr	does	not	propagate.

Exercise	9.3
A	wave	of	mode	H1	with	frequency	f	=	6.00	GHz	is	propagating	in	a	double-plate	metal



waveguide	with	the	distance	between	plates,	a,	equal	to	3.00	cm.	The	waveguide	is	filled
by	a	nonabsorbing	dielectric	with	 relative	dielectric	permittivity	κ	=	2.5.	Find	 the	phase
and	 group	 velocities,	 the	 critical	 wavelength,	 and	 the	 wavelength	 of	 the	 wave	 in	 the
waveguide.

FIGURE	9.9	Beam	picture	of	process	of	wave	propagation	in	a	two-plane	waveguide	for
different	wavelengths.

Solution.	The	wavelength	of	the	wave	in	the	space	filled	by	dielectric	is	equal	to

λ=cfκ=3.16cm.

For	the	given	mode	of	the	wave	(n	=	1),	the	critical	wavelength	in	the	structure	is	equal	to

λcr=2an=2a=6.00 cm.

The	propagation	angle	of	the	wave	in	the	waveguide	is	equal	to

cosθ=λλcr≈0.53,  sinθ=1−cos2θ=0.85,  θ=58∘.
Thus,	the	wavelength	of	the	wave	in	the	waveguide	is	equal	to

λz=λsinθ=cfκsinθ=3.160.85=3.72 cm.

The	phase	and	group	velocities	of	the	wave	in	the	waveguide	are	equal	to

vphz=csinθ≈3.53×108 m/s,  vgrz=c×sinθ≈2.55×108  m/s.

9.4				FIELDS	IN	A	RECTANGULAR	WAVEGUIDE
Theoretical	consideration	of	electromagnetic	wave	propagation	in	a	waveguide	has	to	be
based	on	the	solution	of	Maxwell’s	equations.	It	is	necessary	to	find	such	solution	of	these
equations,	which	will	satisfy	boundary	conditions	at	the	waveguide	walls	and	describe	the
propagation	of	electromagnetic	waves	along	the	waveguide	axis.

We	assume	that	the	waveguide	walls	are	made	of	an	ideal	metal	(i.e.,	conductivity	σ	→
∞).	Under	this	condition,	the	electric	field	at	the	waveguide	walls	should	be	equal	to	zero
(to	have	finite	current	density	j	=	σE	on	the	walls,	it	is	necessary	to	require	E	→	0).	The
waveguide	cavity	can	be	filled	with	a	homogeneous	dielectric	(with	permittivity	εa).

The	sizes	of	a	rectangular	waveguide	cavity	along	x-	and	y-directions	are	equal	to	a	and
b,	respectively.	The	waveguide	length	in	z-direction	is	infinite	(Figure	9.10).



FIGURE	9.10	Rectangular	metal	waveguide.

Electromagnetic	waves	propagating	 in	 this	waveguide	are	 running	along	 the	z-axis	of
the	waveguide	waves	and	standing	in	the	other	two	transverse	directions.	Standing	waves
are	formed	due	to	multiple	reflections	of	the	waves	from	the	waveguide	walls.

The	fields	for	a	monochromatic	wave	field	in	a	waveguide,	Equations	9.1,	in	this	case
can	be	written	in	the	following	form:

E(x,y,z,t)=E(x,y)exp[	i(ωt−βz)	],H(x,y,z,t)=H(x,y)exp[	i(ωt−βz)	], (9.9)

where	ω	and	β	are	 the	angular	 frequency	and	propagation	constant	of	 the	natural	wave,
respectively.

In	rectangular	waveguides,	an	infinite	number	of	type	H	and	type	E	waves,	which	differ
from	each	other	by	the	field	structure,	can	exist.	The	waves	are	described	by	two	integer
indices:	m	and	n.	To	 each	combination	of	 these	numbers,	 there	 corresponds	 a	particular
structure	of	waves	of	type	Hmn	and	Emn.	Indices	m	and	n	specify	the	number	of	half-waves
that	fits	along	x-	and	y-axes,	respectively.	Usually,	the	x-axis	is	directed	along	the	longer
side	of	a	waveguide.

For	a	type	Hmn	wave,	 the	solution	of	Maxwell’s	equations	together	with	the	boundary
conditions	 mentioned	 earlier	 leads	 to	 the	 following	 coordinate	 dependence	 of	 the
components	of	the	electric	field	and	magnetic	fields	intensity:

Ex=iωμaπng2bH0 cos(πmxa)sin(πnyb),Ey=−iωμaπmg2bH0 sin(πmxa)cos(πnyb),  
Ez=0,Hx=iβπmg2bH0 sin(πmxa)cos(πnyb),Hy=iβπng2bH0 

cos(πmxa)sin(πnyb),Hz=H0 cos(πmxa)cos(πnyb),
(9.10)

where	g=k02κκm−β2	is	 the	 transverse	wave	number.	For	 the	corresponding	components
of	a	wave	of	type	Emn,	we	get

Ex=−iβπmg2aE0 cos(πmxa)sin(πnyb),Ey=−iβπng2bE0 sin(πmxa)cos(πnyb),Ez=E0 
sin(πmxa)sin(πnyb),Hx=iωεaπmg2bE0 sin(πmxa)cos(πnyb),Hy=−iωεaπng2bE0 

cos(πmxa)sin(πnyb),  Hz=0.
(9.11)

For	each	set	of	indices	m	and	n,	a	quantity	called	the	critical	frequency	is	determined	from
the	dimensions	of	a	waveguide	and	the	properties	of	the	dielectric	filling	the	waveguide.
This	frequency	is	given	by	the	equation

ωcr=πv0(ma)2+(nb)2, (9.12)

where	v0=1/εaμa=c/κκm	is	the	velocity	of	the	wave	in	a	medium	with	parameters	εa	and
μa.	 For	 each	 critical	 frequency,	 it	 is	 possible	 to	 calculate	 a	 critical	 wavelength
corresponding	to	it:

λcr=2πv0ωcr=2(m/a)2+(n/b)2. (9.13)



We	note	that	the	critical	wavelength	does	not	depend	on	dielectric	parameters	and	depends
only	on	the	type	of	a	wave	and	the	waveguide	sizes.	If	ω > ωcr or λ < λcr,	 types	Emn	and
Hmn	waves	with	indices	m	and	n	can	propagate	in	the	line.

The	 critical	 frequency	 (or	 critical	 wavelength)	 is	 involved	 in	 all	 expressions	 for	 the
wave	parameters	in	a	waveguide.	Thus,	 the	transverse	wave	number	and	the	distribution
constant	βmn	are	given	by

g=2πλcr

βmn=k1−(ωcrω)2=k1−(λλcr)2. (9.14)

The	 latter	 is	 always	 smaller	 than	 the	 wave	 number	 of	 the	 dielectric	 in	 the	 waveguide,
k=2π/λ=ωεaμa.	 Wavelength	 λin	 in	 a	 waveguide	 is	 larger	 than	 the	 wavelength	 in	 the
dielectric,	λ=2πv0/ω.	The	former	is	given	by	the	expression

λin=λ1−(ωcr/ω)2=λ1−(λ/λcr)2. (9.15)

The	phase	velocity	of	a	wave	in	a	waveguide	is	given	by	the	expression

vphz=ωβmn=v01−(ωcr/ω)2, (9.16)

from	which	it	follows	that	vphz	>	v0.	Therefore,	in	a	waveguide	without	filling,	the	phase
velocity	is	higher	than	the	speed	of	light	in	vacuum	(vphz	>	c).	We	note	that	it	is	the	group
velocity	vgrz	in	a	waveguide	that	determines	the	rate	of	energy	transfer	and	vgrz	is	smaller
than	the	speed	of	light:

vgrz=c2vphz=c1−(λλcr)2. (9.17)

H10	waves	are	used	in	microwave	application	more	often	than	any	other	wave.	This	is	the
reason	why	the	H10	wave	is	called	the	fundamental	wave.	This	wave	has	the	largest	value
of	the	critical	wavelength,	which	is	given	by	Equation	9.13,	if	we	substitute	the	values	of
the	indices	m	=	1,	n	=	0	we	get	λcr10=2a.

For	H01	wave,	the	critical	wavelength	is	λcr01=2b.	For	waves	H20	and	H02,	the	critical
wavelengths	 are	 λcr20=a and λcr02=b,	 respectively.	 The	 critical	wavelengths	 for	 certain
types	 of	 waves	 can	 coincide.	 Such	 waves	 are	 called	 degenerate.	 Critical	 lengths	 are
identical	for	H11	and	E11	waves:

λcr11=2ab/a2+b2.

The	 fundamental	wave	 of	 a	 rectangular	waveguide	H10	 contains	 the	 following	 nonzero
components	of	electric	and	magnetic	fields:

Ey=−iωμaaπH0 sin(πxa),Hx=iβaπH0 sin(πxa),Hz=H0 cos(πxa). (9.18)



Exercise	9.4
What	is	the	length	l	of	a	closed	resonator	with	rectangular	cross	section	area	a	×	b	=	6	×	3
cm2	 if	 it	 is	 known	 that	 at	 the	 resonance	 frequency	 fres	 =	 6.00	GHz,	 only	 three	 standing
waves	can	fit	along	the	waveguide’s	axis.	Find	the	wavelength	of	the	standing	wave	in	the
resonator.

Solution.	 Consider	 a	 segment	 of	 the	 rectangular	 waveguide	 with	 cross	 section	 a	 ×	 b,
bounded	by	two	metal	end	surfaces	at	z	=	0	and	z	=	l	(Figure	9.11).

Such	 a	 closed	 metallic	 structure	 is	 called	 a	 rectangular	 cavity	 resonator.	 In	 the
following,	we	study	one	of	the	modes	of	natural	oscillations	in	this	resonator.	In	the	cavity
of	the	resonator,	a	standing	wave	is	formed	along	the	z-axis.	The	standing	wave	is	a	sum
of	forward	and	backward	propagating	waves	due	 to	reflections	at	 the	ends	of	 the	cavity.
Assume	 that	we	 have	 a	mode	H10	 wave	which	 has	 a	 y-component	 of	 the	 electric	 field
vector	with	complex	amplitude:

Ey+(x,z)=Emax sin(πxa)exp(−iβz),Ey−(x,z)=GEmax sin(πxa)exp(iβz),

FIGURE	9.11	Rectangular	resonator.

where	G	is	an	unknown	amplitude	coefficient.	At	z	=	0,	the	total	electric	field	Ey = Ey+ + 
Ey−	must	 be	 equal	 to	 zero	 (because	 of	 the	 boundary	 condition	 for	 an	 ideal	 conductor).
Therefore,	the	boundary	condition	at	z	=	0	requires	that	G	=	−1.	Using	Euler’s	equation	for
the	sum	of	two	exponential	functions	with	imaginary	exponents,	we	get

Ey(x,z)=Emax sin(πxa)(e−iβz−eiβz)=−2iEmax sin(πxa)sin(βz).

This	expression	describes	a	standing	wave	along	the	x-	and	z-axes	(along	 the	y-axis,	 the
electric	field	does	not	change).	The	wavelength	of	the	standing	wave	along	z-axis	can	be
determined	from	the	longitudinal	wave	number	β.	At	the	end	surface	of	the	resonator	z	=	l,
we	have	the	boundary	condition	Ey	=	0,	from	which	it	follows	that

βl=pπ,

where	 p	 is	 a	 positive	 integer,	 known	 as	 “longitudinal	 index.”	 If	 p	 =	 1,	 half	 of	 the
wavelength	fits	into	the	resonator.	Three	standing	waves	fit	along	the	waveguide’s	axis	if	p
=	6.	The	value	 of	 longitudinal	wave	 number	 β,	which	 satisfies	 the	 obtained	 equality,	 is
called	resonant	wave	number:

βres=pπl.

In	 general,	 in	 a	 closed	 rectangular	 resonator,	 certain	 oscillation	 modes	 of	 the
electromagnetic	field	can	form	standing	waves,	which	are	denoted	as	Hmnp	or	Emnp.	The
resonant	frequencies	of	such	oscillations	are	given	by	the	expression



ωres=2πfres=c(mπa)2+(nπb)2+(pπl)2,

where	a,	 b,	 l	 are	 the	 dimensions	 of	 the	 resonator.	 Here,	 we	 assumed	 that	 the	 relative
permittivity	and	permeability	are	both	equal	to	unity	for	the	empty	cavity	of	the	resonator.
The	main	 oscillation	modes	 having	 the	 lowest	 resonant	 frequencies	 are	H101,	H011,	 and
E110.	At	b	<	a	and	b	<	l,	the	main	mode	of	oscillations	is	H101.

Using	the	relationship	for	ωres,	we	can	calculate	the	value	of	the	resonant	wavelength	in	an
empty	resonator	λ0res:

λ0res=2πcωres=cfres=2(1/a)2+(p/l)2=5.00 cm.

From	this	expression,	we	find	the	resonator	length

l=p(fres/c)2−(1/a)2=3(1/5)2−(1/6)2≈27.3 cm.

For	a	resonator	length	l,	we	get	the	following	value	of	the	resonant	wavelength	inside	the
resonator:

λres=2πβres=2lp≈18.3 cm.

From	this	analysis,	we	conclude	that	by	filling	the	cavity	with	a	dielectric	and	for	a	given
generator	frequency,	the	dimensions	of	the	cavity	can	be	made	smaller.	This	property	may
be	used	to	decrease	the	size	and	mass	of	radio	equipment	operating	in	SHF	range.

9.5				WAVEGUIDE	OPERATING	CONDITIONS
The	higher	the	frequency,	the	more	the	types	of	waves	can	propagate	simultaneously	in	a
waveguide.	 There	 are	 two	 waveguide	 operating	 conditions	 on	 the	 number	 of
simultaneously	 propagating	 waves	 (modes)	 of	 different	 types—single	 mode	 and
multimode.	In	the	former	case,	only	one	type	of	wave	propagates	in	the	waveguide	and	in
the	 second	 several	 types	 of	 waves	 can	 propagate	 simultaneously.	 At	 single-mode
operation,	 all	 power	 is	 transferred	 by	 a	 wave	H10	 and	 at	 multimode	 operation	 by	 all
propagating	 types	 of	 waves.	 Usually,	 devices	 coupled	 to	 a	 waveguide	 at	 its	 output	 are
designed	for	a	particular	type	of	wave.	Therefore,	part	of	the	power	is	lost.	In	practice,	the
single-mode	regime	with	a	H10	wave	type	is	used	as	a	rule.

Three	regimes	of	propagation	are	possible	in	a	waveguide	in	relation	to	each	type	of	a
wave	Hmn	and	Emn:	subcritical,	critical,	and	supercritical.	For	a	given	type	of	a	wave,	the
ratio	of	the	wave	frequency	and	the	critical	frequency	determines	what	regime	is	realized.
The	main	regime	of	propagation	is	the	subcritical	regime	that	is	realized	at	ω	>	ωcr.	In	a
subcritical	operating	regime	of	a	waveguide,	the	distribution	constant	β	is	a	real	number:

β2=k2(1−ωcr2ω2)>0.

The	propagation	constant	in	a	waveguide	determines	the	phase	shift	of	the	wave	per	unit
of	the	waveguide	length.	The	presence	of	the	phase	shift	suggests	that	the	electromagnetic
wave	propagates	through	the	waveguide.	For	fixed	x-	and	y-coordinates,	the	time-average
field	is	constant	along	the	waveguide.

In	the	subcritical	regime,	the	transverse	field	components	E⊥	and	H⊥	(in	a	rectangular



waveguide,	they	are	components	Ex,	Ey,	Hx,	Hy)	are	in	phase	(the	phase	of	each	of	fields	is
φE,H	=	ωt	–	βz).	Therefore,	 the	average	over	a	period	of	 the	Poynting	vector	 is	different
from	zero	and	is	maximum	compared	to	other	waveguides.

If	a	matched	load	is	included	in	the	line	at	the	end	of	the	waveguide,	the	traveling	wave
regime	 is	 realized,	 that	 is,	 in	 the	 waveguide	 the	 subcritical	 mode	 propagation	 of
electromagnetic	wave	energy	is	possible.

Figure	9.12a	shows	the	structure	of	the	wave	field	H10	in	a	rectangular	waveguide	in	the
subcritical	 regime.	 It	 can	 be	 seen	 that	 the	 transverse	 fields	 E⊥	 and	H⊥	 are	 mutually
perpendicular	 and	 the	 location	 of	 the	maxima	 of	 these	 components	 coincides	 along	 the
waveguide.	 Instants	of	 the	 times	at	which	 these	 fields	 reach	 their	maximum	values	also
coincide.

If	 for	 this	 type	 of	 a	 wave	 ω	 =	 ωcr,	 the	 regime	 is	 called	 critical.	 In	 this	 regime,	 the
propagation	constant	β	in	the	waveguide	is	equal	to	zero.	This	means	that	there	is	no	phase
shift	 along	 the	waveguide	 length.	 Lack	 of	 a	 phase	 shift	 shows	 that	 the	 electromagnetic
wave	does	not	propagate	through	the	waveguide.	In	this	case,	all	components	of	the	field
do	not	have	a	dependence	on	the	z-coordinate	along	the	direction	of	wave	propagation.	At
all	points,	both	electric	and	magnetic	fields	have	an	identical	phase,	independent	of	the	x-,
y-,	and	z-	coordinates.	In	other	words,	in	this	regime,	the	phase	and	amplitude	of	a	field	do
not	depend	on	the	longitudinal	coordinate	z.

When	β	=	0,	 the	phases	of	 the	 transverse	 field	 components	E⊥	and	H⊥	 are	mutually
shifted	by	π/2,	that	is,	φE	–	φH	=	π/2.

From	 this,	 it	 follows	 that	 the	 field	 has	 a	 reactive	 character,	 and	 the	 transmission	 of
energy	 along	 the	waveguide	 is	 absent:	 the	 Poynting	 vector	 and	 velocity	 of	 field	 energy
movement	are	equal	to	zero.

FIGURE	9.12	 The	 structure	 of	 the	wave	 field	H10	 in	 a	 rectangular	waveguide	 in	 three



regimes:	subcritical	(ω	>	ωcr)	(a),	critical	(ω	=	ωcr)	(b),	and	supercritical	(ω	<	ωcr)	(c).

The	magnetic	field	intensity	lines	are	drawn	along	the	walls	of	the	waveguide	(Figure
9.12b)	and	conduction	currents	uniformly	flow	through	the	walls.	The	presence	in	the	wall
of	these	currents	results	in	large	thermal	losses.

If	 for	 the	 given	 type	 of	 a	 wave	 in	 a	 waveguide	 ω	 <	 ωcr,	 the	 regime	 is	 called
supercritical.	For	this	regime,	the	propagation	constant	is	purely	imaginary,	that	is,	β2 < 0 
and β=−iβ″.	 Thus,	 the	magnetic	 and	 electric	 fields	 in	 all	 points	 of	 the	 waveguide	 have
constant	phases	φH	and	φE,	differing	by	π/2.	This	means	that	the	electromagnetic	field	in
the	waveguide	in	this	regime	is	reactive,	and	thus,	there	is	no	transmission	of	energy	along
the	waveguide.

For	ω	<	ωcr,	in	contrast	to	the	critical	regime,	the	field	amplitude	along	the	waveguide
is	 not	 constant	 and	 decreases	 exponentially.	 Therefore,	 the	 electric	 field	 of	 the	wave	 is
given	by

E(x,y,z,t)=E(x,y)exp(−β″z)exp(iωt). (9.20)

The	 field	 decreases	 even	 in	 the	 absence	 of	 losses	 in	 the	 walls	 and	 the	 dielectric.	 The
decrease	in	field	is	caused	by	interference	effects,	instead	of	dissipation.	The	field	pattern
for	a	wave	H10	in	the	supercritical	regime	is	shown	in	Figure	9.12c.

Exercise	9.5
A	rectangular	waveguide	is	filled	with	air	and	has	cross-sectional	area	a	×	b	=	10	×	5	cm2.
Identify	all	wave	modes	that	can	exist	in	the	waveguide	at	a	frequency	of	5	GHz.	Find	the
critical	 wavelength	 of	 the	 waveguide	 and	 the	 phase	 and	 group	 velocities	 for	 the
fundamental	wave	and	for	the	wave	with	the	highest	values	of	m	and	n.

Solution.	Let	us	find	wavelength	in	free	space:

λ=cf=6 cm.

The	critical	wavelength	in	the	waveguide	can	be	found	using	the	equation

λcr=2(m/a)2+(n/b)2=2(m/10)2+(n/5)2 cm.

Inside	the	waveguide	only	the	wave	that	satisfies	the	following	conditions	can	propagate:

λ<λcr.

For	different	integers	m	and	n,	we	can	find	the	wave	modes.	Thus,	for	m	=	1	and	n	=	0,	we
get	λcr,10	=	20	cm,	that	is,	λ	<	λcr,	and	a	TE10	mode	wave	may	exist	in	the	waveguide	for
which	 the	 inequality	 λ	<	 λcr,10	 is	 valid.	Analogously,	we	 can	 find	 that	waves	 of	modes
TE01,	 TE20,	 TE30,	 TE11,	 and	 TM11	 may	 propagate.	 Other	 modes	 of	 waves	 cannot
propagate	in	the	waveguide.	Indeed,	let	m	=	2	and	n	=	1.	Then,	we	get

λcr,21=2.8 cm < λ=6 cm,

that	is,	the	required	inequality	is	not	satisfied.

We	 will	 now	 determine	 the	 wavelength	 of	 the	 wave	 in	 the	 waveguide	 and	 the



corresponding	phase	and	group	velocities	for	mode	TE10	(or	H10):

                           λin=λ1−(λ/λcr,10)2=6.3 cm,vphz=λin×f=3.15×108 m/s,  
vgrz=c2vphz=2.86×108 m/s.

For	the	wave	of	mode	TE30,	we	find	λcr	=	6.7	cm,	λin	=	13.4	cm,	vphz	=	6.7	×	108	m/s,	and
vgrz	=	1.35	×	108	m/s.

9.6				DAMPING	OF	WAVES	IN	WAVEGUIDES
In	real	waveguide	structures,	the	propagation	of	waves	is	always	accompanied	by	damping
caused	by	losses	in	the	metallic	walls	that	have	a	finite	conductivity	σ	as	well	as	by	losses
in	the	dielectric	material	inside	the	waveguide.	Here,	we	consider	the	last	one	as	it	is	easy
to	take	into	account	the	absorption	of	energy	in	a	homogeneous	dielectric	medium	using
the	real	and	imaginary	parts	of	the	longitudinal	wave	number	β˜=β′−iβ″	for	a	medium	with
complex	electrical	permittivity	κ=κ′+iκ″	and	magnetic	permeability	κm=κ′m+iκ″m.	In	an
absorbing	medium	the	sign	before	the	exponential	that	contains	parameter	β″	must	always
be	 negative	 which	 leads	 to	 attenuation	 of	 the	 wave	 in	 the	 propagation	 direction.	 The
dependence	of	the	wave’s	electric	field	on	z	and	time	can	be	written	in	the	form

E(z,t)=E0 exp(−β″z)exp[	i(ωt−β′z)	]. (9.21)

Very	often	in	order	to	write	electric	fields	in	different	absorbing	structures,	the	attenuation
coefficient	α	=	β″	and	the	real	constant	of	propagation	β	=	β′	are	introduced,	that	is,

E=E0 exp(−αz)exp[	i(ωt−βz)	]. (9.22)

Since	 only	 the	 real	 part	 of	 a	 parameter	 has	 physical	 meaning,	 the	 following	 equation
derived	from	Equation	9.22	should	be	used:

Re E=|	E0	|exp(−αz)cos(ωt−βz+φ). (9.23)

Here,	the	phase	(ωt−βz+φ)	describes	oscillations	of	the	field	in	time	and	space,	which	is	a
characteristic	 of	 a	 monochromatic	 wave	 with	 real	 longitudinal	 wave	 number	 β.	 The
exponential	factor	gives	the	decrease	in	amplitude	of	the	wave	in	the	direction	of	the	wave
propagation.	Usually,	 the	parameter	α	is	used	as	a	measure	of	the	damping	that	is	called
attenuation	constant	or	damping	coefficient.	Sometimes,	the	inverse	of	α	is	used	instead,	la
=	 l/α,	which	 is	 called	 the	 damping	 length,	 and	 it	 is	 equal	 to	 the	 distance	 for	which	 the
wave	amplitude	is	attenuated	by	a	factor	equal	to	e.

In	 the	 presence	 of	 losses	 in	 the	walls	 and	 in	 the	 dielectric	 in	 the	 subcritical	 regime,
when	 the	 Poynting	 vector,	 averaged	 over	 a	 period,	 is	 not	 zero,	 the	 field	 amplitude
decreases	 along	 the	 waveguide	 exponentially,	 that	 is,	 proportionally	 exp(−αz)	 (Figure
9.13).

The	rate	of	decrease	of	the	field	is	determined	by	the	losses,	that	is,	by	the	attenuation
coefficient	α;	the	greater	the	coefficient	α,	the	faster	the	field	amplitude	decreases.

For	waves	of	various	types,	attenuation	coefficient	due	to	losses	in	the	conductors	is	not



identical	as	it	depends	on	the	form	of	the	lines	of	surface	current	density	on	the	walls	of
the	waveguide,	which	is	different	for	various	types	of	waves.	To	reduce	losses	in	the	walls,
nonmagnetic	materials	with	high	conductivity	should	be	used,	such	as	brass,	copper,	and
aluminum,	and	also	the	walls	should	be	covered	with	materials	that	are	good	conductors
and	do	not	corrode.

The	 thickness	of	 these	cover	 layers	has	 to	be	equal	 to	several	penetration	depths	and,
therefore,	has	to	depend	on	the	operating	frequency.	To	avoid	losses	in	waveguides,	 it	 is
necessary	that	the	surfaces	of	the	internal	walls	are	to	be	well	polished,	free	from	dust,	and
not	be	covered	with	films	of	poorly	conductive	oxides.

For	given	values	of	the	imaginary	parts	of	κ	and	κm,	the	parameters	α	and	la	depend	on
the	 deviation	 of	 the	 wave	 frequency	 from	 the	 critical	 value.	 The	 damping	 coefficient
abruptly	increases	as	ω	approaches	ωcr.	For	ω	≫	ωcr,	 the	ratio	of	 the	 imaginary	and	the
real	 parts	 of	 the	 propagation	 constant	 is	 proportional	 to	 the	 parameter	 known	 as	 loss
tangent,	that	is,	tan	δ	=	2α/β.	The	energy	losses	in	the	metallic	walls	of	the	waveguide	can
be	taken	into	account	using	Leontovich	boundary	conditions	that	establish	the	relationship
between	the	tangential	components	of	the	fields	at	the	boundary	of	the	conductor	when	σ
≫	 ε0κsω	 and	 the	 electric	 field	 that	 is	 concentrated	 practically	 on	 the	 surface	 of	 the
conductor:

FIGURE	 9.13	 Change	 of	 amplitude	 of	 damped	 oscillations	 along	 a	 direction	 of	 wave
propagation	in	the	presence	of	losses.

Et=Zs[	H×n	],  Zs=Z0κmsκs, (9.24)

where

n	is	the	inward-pointing	normal	to	the	boundary	with	conductor
Z0=μ0/ε0	is	the	wave	impedance	of	vacuum
Zs	 is	 the	 surface	 impedance	 of	 the	 conductor	 that	 is	 determined	 by	 its	 complex
dielectric	constant	κs,	and	relative	magnetic	permeability	κms,

In	 conductors	 that	 are	 typically	 used	 in	 transmission	 lines	 (in	 radio	 and	 SHF	 ranges),
κms≈1 and κs≈−iσ/ωε0.	For	a	wide	range	of	frequencies	in	metals,	we	have	|	κs	|≫1;	this
leads	to	small	impedance	of	metals	compared	to	the	impedance	of	vacuum.	Relation	(9.24)
between	the	electric	and	the	magnetic	fields	allows	us	to	write	an	expression	for	the	linear



power	losses	in	conductors	(the	average	energy	flux	onto	the	wall	per	unit	length	of	line)
in	the	following	form:

Ps=12Re Zs∮|	H	|2dl, (9.25)

where	 the	 integral	 is	 taken	 over	 the	 boundary	 contour	 of	 cross	 section	 of	 the	 line.	 It
follows	from	energy	conservation	that	the	power	loss	Ps	and	the	rate	of	change	of	wave’s
energy	flux	are	related	as	follows:

dPwdz=−Ps. (9.26)

If	we	 take	 into	account	 the	quadratic	dependence	of	Pw	 on	 the	 field	 amplitudes	and	 the
exponential	dependence	of	these	amplitudes	on	coordinate	z,	we	get

Pw=P0 exp(−2αz),  dPwdz=−2αPw. (9.27)

These	relationships	allow	us	to	calculate	wave’s	attenuation	coefficient:

α=Ps2Pw=ReZs∮|	H	|2dl2ReZ⊥∬|	H⊥	|2 dA (9.28)

(the	surface	integral	in	the	denominator	is	taken	across	the	line’s	cross	section).	In	the	case
of	relatively	weak	damping	(α	≪	β),	instead	of	field	H	in	this	equation,	we	can	use	field
H0(x,y),	which	is	calculated	for	the	ideal	transmission	line	(at	Zs	=	0).	For	each	mode	of
the	wave,	 the	value	of	 the	attenuation	coefficient	depends	on	the	dimensions	of	 the	line,
the	conductivity	of	walls,	and	the	frequency.	The	study	of	these	dependences	on	the	basis
of	the	general	expressions	for	the	fields	of	TE,	TM,	and	TEM	waves	in	ideal	transmission
lines	gives	us	the	results	that	will	be	discussed	now.

In	a	rectangular	waveguide	for	the	lowest	TE10	mode,	which	is	most	frequently	used	for
the	 transmission	 of	 centimeter	 range	 waves,	 the	 attenuation	 coefficient	 using	 the
relationships	obtained	earlier	can	be	written	as

α=2ωcrε0σ.(a/2b)u2+1au(u2−1), (9.29)

where

u	=	ω/ωcr
ωcr=πc/aκκm

Curve	A	 in	Figure	9.14	 shows	 the	 dependence	 of	 αD	 on	u	 for	 a	 rectangular	waveguide
with	an	aspect	ratio	a/b	=	2.	Here	D=aσ/2ωcrε0.	Minimum	absorption	is	achieved	in	this
case	when	u	≈	2.42,	but	in	reality	usually	smaller	values	of	this	parameter	(u	<	2)	are	used,
since	 at	 u	 >	 2	 the	 waves	 of	 higher	 order,	 TE01	 and	 TE20,	 begin	 propagating,	 which
complicates	the	situation	in	communication	systems.

The	 absolute	 value	 of	 the	 attenuation	 coefficient	 decreases	when	 the	waveguide	 size
increases.	Close	to	the	absorption	minimum	on	curve	A,	we	get	α	∝	1/a3/2	because	ωcr	is



proportional	 to	 1/a1/2	 (see	 Equation	 9.29).	 In	 the	 region	 of	 frequencies,	 where	 ω	 is
substantially	larger	than	ωcr	(i.e.,	u=ω/ωcr≫1),	we	get	from	Equation	9.29	that	α	∝	1/a.	In
particular,	 for	 a	 copper	 (or	brass)	waveguide	with	conductivity	σ	≈	5.50	×	107	S/m	and
dimensions	a	=	2	cm	and	b	=	1	cm	at	λ	=	2.5	cm	(u	=	1.7),	we	find	a	≈	1.4	×	10−2	1/m,	that
is,	the	attenuation	length	is	equal	to	la	≈	70	m.	Due	to	oxidation	of	the	surface	layers	of	the
waveguide’s	walls,	which	results	in	the	reduction	of	effective	value	of	conductivity,	and	to
the	presence	on	the	wall	of	small	irregularities	leading	to	scattering	of	the	wave,	the	real
attenuation	 coefficient	 is	 somewhat	 higher	 than	 the	 calculated	 value.	 Thus,	 for	 energy
transmission	over	distances	of	more	than	10	m,	rectangular	waveguides	in	the	SHF	range
are	not	commonly	used.

Other	 modes	 of	 waves	 in	 rectangular	 and	 other	 types	 of	 waveguides	 have	 similar
behavior	 and	 approximately	 the	 same	 value	 of	 attenuation	 coefficients	 and	 analogous
dependence	of	 a	on	 frequency.	The	only	exception	 is	 the	TE0n	wave	mode	 in	a	circular
waveguide.	The	magnetic	 field	 intensity	 tangential	 component	of	 the	TE0n	mode	on	 the
wall,	 which	 defines	 the	 energy	 flux	 into	 metal	 (the	 line	 integral	 in	 Equation	 9.12),
coincides	with	the	longitudinal	component	Hz,	which	tends	to	zero	at	ω/ωcr→∞	(since	the
wave	 approaches	 the	 transverse	 wave,	 Hz/Hr≈ωcr/ω).	 As	 a	 result,	 the	 attenuation
coefficient	with	increasing	frequency	tends	to	zero	as	ω−3/2.	The	frequency	dependence	of
the	attenuation	coefficient	of	TE01	mode	is	given	by	the	expression

FIGURE	9.14	Attenuation	 coefficients	 as	 functions	 of	 frequency	 for	 the	wave	TE11	of
rectangular	waveguide	with	a/b	=	2	(curve	A)	and	wave	TE01	of	circular	waveguide	(curve
B).

α=ωcrε02σ.1au(u2−1), (9.30)

where	a	 is	the	radius	of	the	waveguide.	This	dependence	is	shown	in	Figure	9.14	(curve
B).	Note	that	here	D=a2σ/2ωcrε0.	Unfortunately,	wave	TE01	is	not	the	lowest	mode	wave
of	 a	 circular	 waveguide.	 Therefore,	 despite	 the	 weak	 attenuation,	 it	 has	 limited
applications	in	communication	lines.

The	 attenuation	 coefficient	 depends	 on	 the	 surface	 current	 density	 that	 the	 wave
generates	on	the	walls	of	a	waveguide.	This	is	why	the	energy	losses	for	different	modes



of	waves	 have	 different	 values.	 For	Emn	 waves	 with	m	 ≠	 0	 and	 n	 ≠	 0,	 the	 attenuation
coefficient	is	equal	to

αmnE=2RsbZ01−(ωcr/ω)2.m2(b/a)3+n2m2(b/a)2+n2, (9.31)

where

Rs=ωμa/2σ	is	the	surface	resistance	of	the	conductor
Z0	=	120π	is	the	wave	impedance	of	vacuum

For	Hmn	waves	with	m	≠	0	and	n	≠	0,	the	attenuation	coefficient	is	equal	to

αmnH=2RsbZ01−(ωcr/ω)2[	m2(b/a)2+n2(b/a)m2(b/a)2+n2+
(ωcrω)2m2(b/a)3+n2m2(b/a)2+n2	]. (9.32)

For	Hmn	waves	with	the	fundamental	mode	m	=	1	and	n	=	0	that	are	not	included	in	this
equation,

α10H=2RsbZ01−(ωcr/ω)2.[	1+ba(ωcrω)2	]. (9.33)

9.7				REFLECTIONS	IN	TRANSMISSION	LINES	AND
NEED	OF	THEIR	MATCHING

In	any	transmission	line,	 it	 is	necessary	to	match	the	line	with	the	load.	This	means	that
the	load	of	the	line	has	to	be	active	and	has	conductivity	equal	to	the	wave	conductivity	of
the	 line.	 In	 this	 case,	 there	 is	 no	 reflected	 wave	 from	 the	 load	 and	 the	 traveling	 wave
regime	 is	 set,	 in	which	 (if	 no	 losses	 are	present)	 the	 time-averaged	density	of	 the	wave
energy	flow	along	the	line	is	constant.

In	 a	mismatched	 line,	 there	 are	 reflections.	 If	 the	 amplitude	 of	 the	 reflected	wave	 is
equal	 to	 the	 incident	wave	amplitude	 (the	 reflection	coefficient	 is	equal	 to	 the	unit),	we
have	a	standing	wave.	In	this	case,	z-field	structure	is	established	along	the	waveguide,	for
which	 the	 field	 maxima	 (antinodes)	 alternate	 with	 zero	 values	 (nodes).	 Nodes	 and
antinodes	of	the	field	are	time	independent.	The	field	phase	does	not	change	from	node	to
node.	 Upon	 transition	 through	 a	 node,	 the	 field	 phase	 changes	 abruptly	 by	 π.	 Energy
transmission	along	the	waveguide	is	absent	though	the	excitation	frequency	is	higher	than
the	critical	value.

If	the	amplitude	of	the	reflected	wave	is	smaller	than	that	of	the	incident	wave,	we	have
the	 following	 situation:	 the	 field	maxima	 alternate	with	 field	minima	 at	which	 the	 field
does	not	reduce	to	zero	and	the	phase	changes	smoothly.

To	 characterize	 the	 degree	 of	matching	 of	 the	 transmission	 line,	 three	 interconnected
values	 are	 used:	 the	 reflection	 coefficient	 (Γ),	 the	 standing	wave	 ratio	 (SWR),	 and	 the
traveling	wave	ratio	(TWR).	The	reflection	coefficient	is	equal	to	the	ratio	of	the	complex
amplitudes	of	the	reflected	and	the	incident	waves.	The	standing	wave	coefficient	is	equal
to	the	ratio	of	the	time-averaged	maximum	and	minimum	values	of	the	field	measured	at
the	 corresponding	 sections	 of	 the	 line	 (SWR	≥	 1).	 The	 value	 reciprocal	 to	 the	 SWR	 is



called	the	TWR	(TWR	≤	1).	The	relationship	between	these	parameters	is

SWR=1+|	Γ	|1−|	Γ	|=1TWR   TWR=1−|	Γ	|1+|	Γ	|=1SWR. (9.34)

Values	 of	 the	 parameters	 characterizing	 a	 degree	 of	matching	 of	 a	 transmission	 line	 at
various	regimes	of	its	operation	are	as	follows:

Parameters	Characterizing	a	Degree	of	Matching

Regime Γ SWR TWR

Traveling	wave 0 1 1

Standing	wave 1 →∞ 0

Mixed	wave <1 >1 <1

Reflections	 in	 a	 transmission	 line	 can	 arise	 not	 only	 from	 a	 load	 but	 also	 from	 any
irregularities	of	the	tract.

The	mismatch	of	the	line	leads	to	a	power	decrease	in	the	load	and	a	reduction	of	the
maximum	permissible	power	 transferred	 to	 the	 load.	As	a	result,	 losses	 increase	and	 the
line	 efficiency	decreases.	Thus,	matching	of	 lines	 and	 realization	of	 a	 situation	 close	 to
that	 of	 a	 traveling	 wave	 in	 most	 of	 the	 transmission	 line	 length	 are	 of	 great	 practical
importance.

To	achieve	matching,	special	matching	elements	are	introduced	in	the	transmission	line.
In	microwave	 transmission	 lines,	 the	 value	 of	 SWR	 =	 (1.1–1.3)	 is	 considered	 as	 good
enough.	The	 reflected	wave	can	be	 removed	with	 the	help	of	 a	valve—a	special	device
introduced	into	the	transmission	line	for	these	purposes.

For	transmission	lines,	their	efficiency	has	great	practical	importance.	This	is	defined	as
the	ratio	of	active	power	in	a	load	to	total	active	power	on	a	line	input.

If	we	assume	that	only	reflections	in	the	transmission	take	place	from	the	load,	 in	the
presence	of	losses,	the	efficiency	(E)	is	calculated	as

E=(1−|	Γ	|2)exp(−2αl), (9.35)

where

|Γ|	is	the	reflection	coefficient	module
α	is	a	damping	factor
l	is	the	length	of	the	line

One	 can	 see	 that	 in	 order	 to	 increase	 the	 transmission	 line	 efficiency,	 it	 is	 necessary	 to
reduce,	whenever	possible,	 the	 length	of	 the	 line,	 to	minimize	reflections,	and	 to	 reduce
losses	in	the	walls	of	the	waveguide	and	in	the	dielectric.



9.8				TWO-WIRE,	COAXIAL,	AND	STRIPLINE
TRANSMISSION	LINES

1.	A	two-wire	line	is	formed	by	two	parallel	conductors,	surrounded	by	a	dielectric	with
the	 parameters	 εa	 and	 μa	 (usually	 air).	 Figure	 9.15	 shows	 a	 symmetric	 two-wire
transmission	line.	This	line	consists	of	two	identical	conductors	with	circular	cross	section
of	radius	r.	The	distance	b	between	the	axes	of	the	conductors	is	constant	along	the	line.
For	such	line,	a	normal	wave	is	purely	transverse	wave	(what	we	often	designate	as	T-type
wave).	The	picture	of	the	field	lines	of	this	wave	is	a	system	of	closed	magnetic	field	lines
around	 each	 conductor	 and	 a	 system	of	 electric	 field	 lines,	 beginning	on	one	 conductor
and	ending	on	another.

This	line	is	characterized	by	inductance	and	capacitance	per	unit	of	length	of	the	line:

L1=μaπln(br−1)Hm,  C1=πεa/ln(br−1)Fm. (9.36)

Channeling	of	 electromagnetic	 energy	 along	 a	 symmetric	 two-wire	 line	 is	 possible	only
for	large	wavelengths,	that	is,	when

λ≫b. (9.37)

Indeed,	 as	 the	 currents	 of	 frequency	 ω	 equal	 in	magnitude	 and	 opposite	 in	 phase	 flow
through	the	wires	and	the	distance	b	between	two	wires	of	the	line	is	small	compared	to
the	wavelength,	the	electromagnetic	waves	created	by	wires	will	appear	almost	the	same
in	an	antiphase	and	opposite	in	phase	at	all	points	of	space,	therefore	these	waves	almost
completely	cancel	each	other.	The	 resulting	 radiation	 field	of	 the	 line	 is	 thus	practically
absent.	 If	 condition	 (9.37)	 is	 not	 satisfied,	 there	 are	 energy	 losses	 on	 radiation	 in	 the
transmission	line.

Some	advantages	of	 the	symmetric	 transmission	 line	are	simplicity	of	design	and	 low
cost.	 The	 disadvantage	 is	 the	 absence	 of	 screening	 of	 the	 electromagnetic	 wave
propagating	 along	 the	 lines.	 Therefore,	 the	 symmetric	 line	 is	 exposed	 to	 influence	 by
external	disturbances	and	has	rather	large	power	losses	in	metal	objects	located	near	it.

Symmetric	two-wire	lines	are	used	as	antenna	feeders	in	the	transmitting	and	receiving
of	 radio	 signals	 for	 frequencies	 30–50	 MHz.	 Twisting	 the	 two	 wires	 with	 a	 separate
insulation	 reduces	 radiation	 of	 the	 line,	 so	 such	 line	 can	 be	 used	 for	 frequencies	 of	 the
order	of	hundreds	of	megahertz.	The	possibility	of	energy	radiation	into	the	surrounding
space	restricts	the	use	of	two-wire	transmission	lines	in	the	microwave	range.



FIGURE	9.15	Picture	of	electric	field	and	magnetic	field	intensity	lines	of	a	T	wave	in	a
symmetric	two-wire	transmission	line.

2.	 From	 among	 transmission	 lines	 of	 T-type	 waves,	 in	 the	microwave	 range,	 a	 coaxial
transmission	line	is	most	often	used.	This	line	consists	of	two	coaxial	metal	cylinders	with
diameters	d	and	D,	separated	by	a	dielectric	layer	with	permittivity	εa	and	permeability	μa
(Figure	9.16).

The	electric	 field	distribution	 in	 the	 transverse	plane	of	 the	 coaxial	 transmission	 line,
which	 operates	 at	 a	 type	 T	 wave,	 has	 a	 field	 structure	 similar	 to	 that	 of	 a	 cylindrical
capacitor.	The	electric	field	vector	is	radial	with	magnitude	Er:

Er=Ur⋅ln(D/d),   d≤r≤D, (9.38)

where	U	 is	the	potential	difference	between	the	inner	and	outer	conductors	at	z	=	0.	The
complex	amplitude	of	the	electric	vector	of	the	traveling	wave	is	written	as	follows:

E(r,z)=Er⋅exp(−iβz). (9.39)

The	main	feature	of	the	coaxial	line	is	that	the	current	in	it,	traveling	from	the	generator	to
the	load	on	the	inter	cylinder,	returns	to	the	generator	on	the	outer	conductor.	Because	of
this,	 in	the	space	between	the	cylinders,	 the	magnetic	field	intensity	lines	have	the	same
form	as	 in	 the	 case	of	 current	 flow	on	 a	 single	 cylindrical	 conductor,	 that	 is,	 they	 form
concentric	circles.

In	 a	 cylindrical	 coordinate	 system,	 the	magnetic	 field	 intensity	 vector	 has	 the	 single
azimuthal	 component	Hφ	 The	 amplitude	 of	 the	 magnetic	 field	 can	 be	 easily	 expressed
through	the	wave	impedance	of	the	T	wave:

Hφ(r)=ErZ=εaμa2πErln(D/d), (9.40)

where

Z≈L1C1=12πμaεalnDd.



FIGURE	 9.16	 Structure	 of	 an	 electromagnetic	 field	 of	 T-type	 wave	 in	 a	 coaxial
transmission	line.

The	running	parameters	of	a	coaxial	transmission	line	are

L1=μa2πlnDdH/m,  C1=2πεaln(D/d)F/m. (9.41)

To	suppress	losses	due	to	higher	harmonics	that	can	arise	in	a	waveguide,	it	is	necessary
that	the	frequency	satisfies	the	inequality

ω≤4εaμa(d+D). (9.42)

The	main	advantages	of	the	coaxial	transmission	line	are	their	broadband,	the	absence	of
radiation	 leak,	 and	 the	possibility	of	being	manufactured	 in	 the	 form	of	 flexible	coaxial
cables.

The	 main	 drawbacks	 are	 large	 attenuation,	 low	 dielectric	 strength,	 and	 design
complexity.	Coaxial	transmission	lines	are	most	often	applied	in	the	form	of	coaxial	cables
to	connect	the	radio	equipment	blocks.	Coaxial	lines	and	elements	of	coaxial	type	are	used
at	frequencies	up	to	about

3.	 In	 the	 microwave	 range,	 the	 guiding	 systems	 called	 stripline	 transmission	 lines	 are
widely	used	as	well.	They	are	especially	convenient	in	printed	and	integrated	microwave
circuits.

In	Figure	9.17,	stripline	transmission	lines	of	the	asymmetric	and	symmetric	types	are
shown.	These	lines	are	filled	with	different	types	of	dielectrics.

The	 rigorous	 theory	 of	 striplines	 is	 quite	 complex.	 In	 striplines,	 the	 T	waves	 cannot
propagate	in	pure	form.	However,	what	is	known	as	quasi-T	wave	can	exist	in	these	lines,
if	 the	 width	 of	 the	 current-carrying	 conductor	 and	 the	 distance	 between	 it	 and	 the
grounded	plate	are	less	than	a	half	of	the	wavelength	in	the	transmission	line.	In	this	case,
the	 electric	 and	 magnetic	 fields	 are	 concentrated	 mostly	 in	 the	 space	 between	 the
conductor	and	the	grounded	plate.	The	picture	of	electric	field	lines	is	similar	to	that	of	the
static	field	in	a	plane	capacitor.

The	 asymmetrical	 line	 is	 constructed	 most	 simply.	 However,	 it	 has	 an	 essential
drawback:	 part	 of	 the	 wave	 propagates	 in	 air	 and	 causes	 undesirable	 interference	 with
other	 nearby	 elements.	 The	 symmetric	 line	 is	 almost	 completely	 screened.	 Rather	 big
attenuation	 and	 small	 values	 of	 transmitting	 power	 are	 the	 other	 shortcomings	 of
striplines.

Striplines	are	used	predominantly	 in	 the	3–10	GHz	 range	 for	 the	 transmission	of	 low



power.	Their	advantages	in	comparison	with	hollow	waveguides	consist	of	the	simplicity
of	 their	manufacturing,	 their	compactness,	and	 low	cost.	The	striplines	manufactured	by
printed	 circuits	 offer	 especially	 great	 advantages	 in	 the	manufacture	 of	 small	 functional
units	for	the	microwave	region.	In	miniature	microwave	integrated	circuits,	asymmetrical
microstriplines,	which	have	technological	advantages,	are	used.

FIGURE	 9.17	 Structure	 of	 an	 electromagnetic	 field	 in	 stripline	 transmission	 lines:	 the
asymmetric	(a)	and	the	symmetric	(b).

Exercise	9.6

An	open	two-wire	line	with	air	insulation	is	formed	by	two	parallel	wires	separated	by	a
distance	D	=	16.0	mm.	The	wire	radius	d	=	2.00	mm.	Find	the	inductance	and	capacitance
per	unit	length	of	the	line.

Solution.	1.	First,	we	find	the	inductance	per	unit	length	of	the	line.	Since	for	air	κm	=	1
and	μ0	=	4π	×	10−7	H/m,	then	for	air	line	Equation	9.41	takes	the	form

L1=μaπ⋅ln(Dd)=0.92.ln(Dd)μH/m,
for	the	given	case

L1=μπ⋅ln(Dd)=0.92.ln(Dd)=0.92⋅0.90=0.83 μH/m.
2.	Next,	we	find	the	linear	capacitance	per	unit	length	of	the	line.	Since	for	air

εa=κε0=10−936πF/m,

the	capacitance	per	unit	length	is	equal	to

C1=πεaln(D/d)=12.1ln(D/d)=12.1ln(16/2)=13.4pF/m.

If	 the	 line	 is	 filled	 by	 dielectric	 with	 εa≠ε0,	 then	 we	 need	 to	 introduce	 the	 dielectric
constant	κ.

9.9				OPTICAL	WAVEGUIDES	(LIGHTGUIDES)
The	operation	of	waveguides	is	based	on	the	phenomenon	of	 total	internal	reflection	of
light.	 The	 basic	 elements	 of	 an	 integrated	 optics	 and	 fiber	 optics	 are	 planar	 and	 fiber
optical	waveguides,	which	we	will	discuss	next.

1.	The	planar	waveguide	consists	of	a	thin	dielectric	layer	on	a	dielectric	substrate	with	a
lower	 refractive	 index.	The	 light	wave	 in	 such	 layer	 can	propagate	 due	 to	 total	 internal
reflection	at	the	“layer–substrate”	and	“layer–covering	medium”	interfaces	(Figure	9.18).
The	thickness	of	the	optical	lightguide	layers	is	comparable	with	the	wavelength	of	light
and	is,	usually,	of	h	=	0.3–3	μm.



FIGURE	9.18	Planar	optical	waveguide.

The	 materials	 suitable	 for	 the	 manufacture	 of	 waveguide	 structures	 are	 a	 variety	 of
glasses,	polymers,	electrooptic	crystals,	active	dielectrics,	and	semiconductors.

In	a	dielectric	waveguide,	modes	at	frequency	ω	are	the	solutions	of	the	wave	equation
that	satisfy	the	boundary	conditions.	In	optical	waveguides,	the	existence	of	both	radiative
and	directed	(waveguide)	modes	is	possible.	Waveguide	mode	represents	a	wave,	which	is
traveling	in	the	propagation	direction	but	forms	a	standing	wave	in	the	direction	normal	to
the	plane	of	the	waveguide.

Assuming	 that	 the	 direction	 of	 propagation	 coincides	 with	 the	 z-axis	 of	 a	 Cartesian
coordinate	system	and	the	direction	of	 the	normal	 is	along	x-axis,	 the	expression	for	the
field	mode	can	be	written	as

E(t,x,z)=E(x)exp[	i(ωt−βz)	], (9.43)

where

E	is	the	electric	field	of	the	light	wave
β = ω/vph	is	the	propagation	constant

From	solutions	of	Maxwell’s	equations,	it	follows	that	for	an	isotropic	optical	waveguide
and	also	for	waveguides	based	on	uniaxial	crystals	 (when	the	 light	propagates	along	 the
principal	 axes),	 the	waveguide	modes	have	 either	 purely	TE	or	TM	structure.	From	 the
form	 of	 the	 refractive	 index	 distribution	 over	 the	 cross	 section	 (along	 the	 x-axis),	 the
planar	 optical	 waveguides	 are	 divided	 into	 homogeneous,	 for	 which	 a	 change	 of	 the
refractive	 index	 is	 constant	 inside	 of	 the	 waveguide	 and	 has	 a	 steplike	 change	 on	 its
boundary,	and	inhomogeneous	(or	graded),	with	a	smooth	change	of	the	refractive	index.
The	first	 type	of	waveguide	is	often	named	a	waveguide	with	step	discontinuity	or	even
called	 using	 the	 shorter	 term	 step	 waveguide.	 In	 step	 waveguides,	 the	 formation	 of	 a
guided	mode	can	be	regarded	as	the	result	of	wave	propagation	in	a	homogeneous	film	in
the	 zigzag	 fashion	 shown	 in	 Figure	 9.19.	 To	 realize	 the	 waveguide	 regime	 in	 such	 a
waveguide,	it	is	necessary	to	satisfy	the	condition

n1>n0,  n1>n2, (9.44)

where	n0,	n1,	and	n2	are	the	refractive	indices	of	the	covering	medium	(often,	it	is	simply
air),	the	waveguide	layer,	and	the	substrate,	respectively.

In	 a	 gradient	 waveguide,	 there	 is	 no	 explicit	 interface	 of	 the	 substrate	 with	 the
waveguide	 layer.	 In	 this	 case,	 the	 direction	 of	wave	 propagation	 is	 changed	 due	 to	 the
inhomogeneity	 of	 the	 material	 refractive	 index.	 As	 a	 result,	 the	 light	 beam	 in	 the
waveguide	region	propagates	by	refraction	along	curvilinear	paths	(Figure	9.20).



FIGURE	 9.19	 Refractive	 index	 profile	 (a),	 beam	 propagation	 model	 (b),	 and	 field
distribution	of	modes	TE0	and	TE1	(c)	in	step	lightguide.

The	 profile	 n(x)	 is	 usually	 defined	 by	 the	 application	 and	 in	 particular	 by	 the
wavelength	 of	 the	wave	 to	 be	 transmitted.	 The	 electric	 field	 in	 the	 interval	 0	 <	 x	 <	 xt,
where	xt	is	the	turning	point,	is	an	oscillating	function.	Outside	this	region,	the	mode	field
decays	exponentially.	The	turning	point	is	defined	as	the	coordinate	at	which	the	tangent
to	 the	path	of	 the	 light	beam,	which	propagates	 in	 the	gradient	waveguide	by	refraction,
becomes	parallel	to	the	waveguide	surface.

Energy	carried	by	the	guided	modes	is	 localized	in	the	region	of	the	waveguide	layer.
Radiative	modes	 carry	 out	 the	 energy	 from	 the	waveguide	 layer	 to	 the	 coating	 layer	 or
(and)	the	substrate.

2.	The	main	element	in	optical	fiber	lines	is	a	fiber	lightguide.	The	simplest	lightguide	is
an	optically	transparent	circular	dielectric	rod,	called	the	core,	surrounded	by	an	optically
transparent	dielectric	shell	(Figure	9.21).

The	 refractive	 index	 of	 a	 core	 n1	 is	 higher	 than	 the	 refractive	 index	 of	 a	 shell	 n2.
Depending	 on	 fiber	 manufacturing	 technology,	 a	 refractive	 index	 can	 change	 either
abruptly	or	smoothly.	Also	in	the	case	of	planar	lightguides,	in	the	former	case,	fibers	are
called	 step	 fiber,	 and	 in	 the	 second,	 they	 are	 called	 gradient	 fiber.	 The	 shell	 of	 fiber
lightguides	 is	 fabricated	 from	 clear	 quartz	 glass	 SiO2,	 and	 the	 increase	 of	 the	 core
refractive	index	is	achieved	by	doping	it	with	germanium	or	phosphorus.	In	recent	years,
optical	 fibers	 from	 multicomponent	 glasses	 and	 polymers	 are	 applied	 more	 and	 more
widely.	They	are	used	in	the	cheap	mass	production	of	optical	fibers	of	average	quality	for
communication	over	short	distances.	The	outside	of	the	fiber	is	coated	with	polyethylene
to	 protect	 it	 from	 mechanical	 damage.	 The	 fiber	 ends	 are	 polished,	 and	 a	 source	 of
radiation	 is	attached	 to	one	of	 them.	Light-emitting	diodes	and	semiconductor	 lasers	are
used	as	sources	of	radiation	in	optical	communication	lines.

FIGURE	9.20	 Refractive	 index	 profile	 (a),	 beam	model	 of	 light	wave	 propagation	 (b),



and	field	distribution	of	modes	TE0	and	TE1	(c)	in	gradient	lightguide.

FIGURE	9.21	Structure	of	an	optical	fiber.

FIGURE	9.22	Light	propagation	 in	a	cylindrical	 lightguide	for	different	angles	of	wave
entry	into	the	waveguide:	φ0	<	φcr	(a),	φ0	=	φcr	(b),	and	φ0	>	φcr	(c).

Figure	9.22	 shows	 the	propagation	of	 radiation	 in	 a	 cylindrical	 lightguide	at	different
angles	of	 incidence.	For	 the	 transmission	of	 light	by	optical	 fibers,	 the	principle	of	 total
internal	 reflection	 is	 used.	This	 is	 possible	 if	n1	 >	n2,	 and	 the	 angle	of	 incidence	 at	 the
interface	between	two	media	(core–shell)	has	such	value	that	the	angle	of	refraction	in	the
second	media	approaches	90°	(critical	angle).	If	the	light	beam	enters	the	fiber	at	an	angle,
φ0	 <	φcr,	 relative	 to	 the	 optical	 axis	 (Figure	 9.22a),	 the	 refracted	 beam	will	 experience
total	 internal	 reflection	 at	 the	 interface	 between	 the	 core	 and	 the	 cladding	 layer	 (shell).
Increasing	 the	 angle	 of	 incidence	 also	 increases	 the	 angle	 of	 refraction	 and,	 at	 some
critical	angle	φcr,	the	refracted	beam	will	not	be	reflected,	but	it	will	propagate	along	the
boundary	between	the	core	and	the	cladding	(Figure	9.22b).	A	further	increase	in	the	angle
of	incidence	will	result	in	the	radiation	penetrating	into	the	shell	(Figure	9.22c).	The	angle
of	incidence	from	which	all	the	energy	is	reflected	from	the	interface	between	the	core	and
the	cladding	is	called	aperture.	To	have	total	internal	reflection,	it	is	necessary	to	provide
a	 difference	 in	 the	 refractive	 indices	 near	 the	 outer	 surface	 of	 the	 core	 and	 that	 of	 the
cladding.	In	the	case	of	a	steplike	change	of	the	refractive	index,	the	optimal	situation	is
when	the	refractive	index	of	the	cladding	differs	from	that	of	core	by	a	factor	of	1.4.

For	gradient	lightguides,	a	parabolic	dependence	of	the	refractive	index	along	the	radial
direction	with	a	maximum	value	on	the	lightguide	axis	has	special	importance.	Glass	and
quartz	 fibers	 with	 a	 quadratic	 function	 n(r)	 are	 widely	 used	 in	 communication	 for
transmitting	signals	and	the	formation	of	optical	images.	This	is	due	to	the	fact	that	light
pulses,	 propagating	 in	 multimode	 optical	 fibers,	 experience	 minimal	 temporary
broadening	and	thus	distortion,	when	fibers	with	a	parabolic	transverse	dependence	of	the
refractive	index	are	used.



PROBLEMS
9.1	 A	 plane	monochromatic	 wave	with	 s-polarization	 and	 frequency	 f	 =	 5.00
GHz	 is	 incident	 from	 a	 nonmagnetic	 dielectric	 medium	with	 permittivity	 ε	 =
1.50	ε0	onto	the	surface	of	a	nonmagnetic	metal	at	an	angle	θ	=	30°	with	respect
to	normal	to	the	metal	surface.	Determine	the	ratio	of	the	wavelengths	and	phase
and	group	velocities	of	the	wave	in	the	dielectric	to	the	guided	wave	at	the	metal
surface.	(Answer:	λ/λw = 0.50, vph/vphw = 0.50, vgr/vgrw = 2.00)
9.2	Consider	a	cylindrical	coaxial	cable	 that	consists	of	a	central	conductor	of
radius	 r1	 and	 an	 outer	 shell	 (see	 Figure	 9.23).	 The	 space	 between	 the	 central
conductor	and	the	shell	(i.e.,	from	r1	to	r2)	is	filled	with	a	dielectric	with	relative
permittivity	κ.	An	alternating	current	voltage	V	 is	 applied	 between	 the	 central
conductor	and	the	outer	shell;	 the	current	in	the	cable	is	equal	to	I.	Neglecting
the	resistance	of	conductors,	find	the	dependence	of	the	power	transmitted	in	the
dielectric	as	a	function	of	radius	r	(r	is	an	arbitrary	point	between	r1	and	r2;	see
Figure	9.23).	Prove	 that	 alternating	 current	 energy	 is	 transmitted	only	 through
the	dielectric.	(Answer:	S=VI2πr2ln(r2/r1).)
9.3	 Power	 P	 is	 transmitted	 along	 a	 two-wire	 transmission	 line.	 The	 voltage
applied	between	the	two	wires	is	equal	to	V	and	a	current	in	the	wires	is	equal	to
I;	 the	 wires	 are	 surrounded	 by	 air.	 By	 neglecting	 the	 resistance	 of	 the	 wires
whose	radius	is	equal	to	r0	(see	Figure	9.24),	find	the	dependence	of	the	energy
flux	 density	 (the	 Poynting	 vector)	 on	 the	 coordinate	 x	 at	 y	 =	 0.	 (Answer:
Sz=VId24πx2(d−x2)ln(d/r0).)
9.4	The	width	b	of	the	smaller	wall	of	a	rectangular	waveguide	is	equal	to	3.00
cm	 (see	 Figure	 9.10).	 Determine	 the	 minimum	 size	 a	 of	 a	 larger	 wall	 of	 the
waveguide	if	it	is	filled	with	air,	where	a	wave	of	type	TE11	with	frequency	f	=
6.00	×	109	Hz	 can	propagate.	What	 is	 the	 critical	wavelength?	 (Answer:	λcr	 =
5.00	cm.)
9.5	Prove	that	in	a	rectangular	waveguide,	the	phase	velocity	of	a	TE10	wave	(or
H10	wave)	is	greater	than	the	speed	of	light.
9.6	 A	 TE11	 (or	 H11)	 wave	 with	 frequency	 f	 =	 6.00	 GHz	 is	 propagating	 in	 a
rectangular	 waveguide	 with	 wall	 sides	 a	 =	 5.00	 cm	 and	 b	 =	 3.00	 cm.	 The
waveguide	is	filled	with	a	dielectric	with	dielectric	permittivity	ε	=	2.25	ε0.	Find
the	 critical	 wavelength,	 the	 wavelength	 in	 the	 waveguide,	 and	 the	 phase
velocity.	(Answer:	λcr	=	5.15	cm,	λin	=	4.38	cm,	λph	=	2.65	×	1010	cm/s.)



FIGURE	9.23	Cross	section	of	a	coaxial	cable.

FIGURE	9.24	Two-wire	transmission	line.

FIGURE	9.25	A	rectangular	wave	pulse.

9.7	Find	the	spectral	distribution	of	a	rectangular	pulse

s(t)={	A,|	t	|<τ/2,0,|	t	|>τ/2,	}

whose	duration	is	equal	to	τ	and	its	amplitude	is	equal	to	A	(see	Figure	9.25).
9.8	 Pulses	 with	 a	 rectangular	 envelope	 are	 propagating	 in	 a	 rectangular
waveguide	with	wall	 dimensions	 of	a	 =	 2.30	 cm	 and	b	 =	 1.00	 cm.	The	 pulse
duration	 τ	 =	 10.0	 ns,	 the	 carrier	 (central)	 frequency	 f0	 =	 9.00	 GHz,	 and	 the
waveguide	 length	 l	 =	 100	 cm.	 Determine	 the	 distortion	 of	 the	 pulse	 when	 it
reaches	 the	 end	 of	 the	 waveguide.	 Hint:	 The	 front	 and	 the	 back	 of	 the
rectangular	 pulse	 propagate	 with	 different	 group	 velocities	 through	 the
waveguide.



10Emission	of	Electromagnetic	Waves
The	electromagnetic	 field	of	 fixed	or	uniformly	moving	charged	particles	 is	 inseparably
linked	 to	 these	 particles.	 Accelerated	 motion	 of	 charged	 particles,	 on	 the	 other	 hand,
results	 in	 an	 electromagnetic	 field,	 which	 is	 “detached”	 from	 the	 charges	 and	 exists
independently	from	them	in	the	form	of	a	wave	propagating	in	space.	Maxwell	predicted
the	 existence	 of	 electromagnetic	waves	 based	 on	 his	 equations;	 experimental	 proof	was
obtained	by	H.	Hertz	in	1886	after	Maxwell’s	death.

The	 simplest	 emitters	 of	 electromagnetic	 waves	 are	 accelerated	 electric	 charges	 and
oscillating	electric	dipoles	 in	 the	 form	of	a	 line	segment	or	conductor	 through	which	an
alternating	 current	 exists.	 The	 electric	 charges	 in	 the	 conductor	 follow	 an	 oscillatory
motion,	 so	 the	 alternating	 current	 carrying	 conductor	 acts	 as	 an	 antenna.	 An	 antenna
transforms	the	oscillations	of	charges	into	free	waves	that	are	radiated	in	certain	directions
that	depend	on	the	geometry	of	the	antenna.	Different	types	of	antennas	will	be	discussed
in	this	chapter.

The	 structure	 and	nature	 of	 electromagnetic	 field	 distribution	 in	 space	 depend	on	 the
distance	from	the	emitter	to	the	observation	zone,	which	is	subdivided	into	near-	and	far-
field	 zones.	The	near-field	zone	 extends	 from	 a	 source	 to	 distances	 that	 have	 the	 same
order	 of	magnitude	with	 the	wavelength	 of	 the	 electromagnetic	 wave	 generated	 by	 the
source.	 In	 this	 zone,	 the	 field	 strength	 usually	 decreases	 sharply	with	 distance	 from	 the
source,	and	the	fields	continue	to	exist	when	the	current	frequency	tends	to	zero	(i.e.,	the
time-independent	fields	can	exist	in	the	near-field	zone).

The	 far-field	 zone	 is	 located	 at	 a	 distance	 much	 greater	 than	 the	 wavelength	 of	 the
emitted	wave,	 and	 the	 field	 strength	decreases	 inversely	proportional	 to	 a	distance	 from
the	 source.	Here,	 the	 field	 propagates	 as	 a	 plane	wave	whose	 energy	 is	 divided	 equally
between	 its	 electric	 and	 magnetic	 components.	 In	 free	 space,	 the	 relation	 between
strengths	of	electric	field	and	magnetic	field	intensity	is	E	=	Z0H,	where	the	impedance	of
vacuum	is	Z0=μ0/ε0=377Ω.

10.1		RADIATION	EMITTED	BY	AN	ACCELERATED
MOVING	CHARGE

A	 description	 of	 the	 electromagnetic	 field	 generated	 by	 an	 accelerating	 charge	 can	 be
directly	obtained	from	Maxwell’s	equations.	However,	in	the	following	text,	we	present	a
less	rigorous	but	more	physical	derivation	based	on	the	continuity	of	the	electric	field	lines
in	vacuum.	Consider	the	motion	of	a	point	charge	q,	which	was	at	rest	for	t	<	0	and	at	time
t	=	0	begins	moving	from	its	rest	point	z	=	0	in	the	positive	direction	of	the	z-axis	with	a
constant	acceleration	a.

After	a	short	time	interval	Δt,	the	acceleration	stops	and	the	charge	continues	to	move
with	constant	velocity	v	=	aΔt	(Figure	10.1).

Consider	now	the	picture	of	the	electric	field	lines	generated	by	a	charge	that	moves	as
it	is	shown	in	Figure	10.1a.	At	time	t	(t	≫	Δt),	information	about	changes	in	the	motion	of



charge	q	has	not	reached	the	points	that	are	outside	the	sphere	of	radius	r	=	ct,	where	c	is
the	speed	of	 light	 in	vacuum.	Therefore,	 the	electric	field	 in	 this	area	coincides	with	 the
field	of	a	point	charge	q	at	rest	at	the	origin	of	coordinates:	E(r)=(keq/r3)r.

Inside	the	sphere	of	radius	r=c(t−Δt),	there	is	a	field	of	a	charge	moving	with	uniform
velocity.	For	v	≪	c,	the	field	of	the	charge	at	time	t	coincides	with	the	field	of	point	charge
q,	which	is	in	a	point	z=Δv⋅t.	Thus,	for	time	t	≫	Δt,	the	displacement	of	the	charge	during
the	acceleration	can	be	neglected.	Taking	into	account	the	continuity	of	the	electric	field
lines,	these	lines	have	the	form	shown	in	Figure	10.1b.

FIGURE	 10.1	 Time	 dependence	 of	 the	 velocity	 of	 a	 charged	 particle	 (a)	 and	 the
distribution	of	the	electric	field	lines	of	the	accelerated	charge	(b).

The	 change	 in	 shape	 of	 the	 electric	 field	 lines	 between	 spheres	 r=c(t−Δt) and r=ct	 is
related	with	the	change	in	the	charge	velocity	v(t)	shown	in	detail	in	Figure	10.2.	Consider
one	of	the	field	lines	that	passes	through	the	observation	point	O′,	which	is	at	a	distance	r
from	the	origin	of	coordinates.	The	direction	vector	of	point	O′	forms	an	angle	θ	with	the
axis	0z.	Let	us	determine	the	ratio	of	tangential	Eθ	and	radial	Er	components	of	a	vector	of
electric	 field	E	 between	 spheres	 r=c(t−Δt) and r=ct.	 As	 it	 is	 shown	 in	 Figure	 10.2,	 the
radial	component	BO′	of	vector	E	(its	length	is	equal	to	AO′)	is	proportional	to	cΔt	and	the
tangential	component	AB	is	proportional	to	Δv⋅t sinθ,	so	their	ratio	is

EθEr=Δv⋅t sinθcΔt. (10.1)

The	radial	component	of	the	electric	field	Er=keq/r2	is	a	static	component	of	the	field	of	a
point	charge.	Since	Δv=aΔt	(here	a	=	dv/dt	 is	acceleration	of	 the	charge)	and	r	=	ct,	 the
electric	component	of	the	wave	field	is

Eθ=Δv⋅t sinθcΔtEr=14πε0qa sinθrc2. (10.2)

For	 the	magnetic	 component	 of	 the	 wave	 field	 (E=Z0H,Z0=μ0/ε0=1/cε0,c=1/ε0μ0),	 we
obtain

Hφ=ε0cEθ=qa sinθ4πrc. (10.3)



FIGURE	10.2	Derivation	of	formula	(10.1).

In	 this	case,	 the	Poynting	vector	S	=	E	×	H	 (the	vector	 that	determines	 the	energy	flow
through	a	unit	area	per	unit	time)	is	directed	radially	outward	along	the	position	vector	r,
and	its	magnitude	is

Sr=EθHφ=Z0(qa sinθ4πrc)2,   Z0=μ0ε0. (10.4)

From	this,	it	can	be	seen	that	the	flux	of	the	emitted	energy	is	proportional	to	the	square	of
the	accelerated	charge.

The	spatial	distribution	of	the	energy	flow	depends	on	the	direction	of	angle	θ:	the	flow
reaches	its	maximum	value	for	θ	=	π/2	and	vanishes	at	θ	=	0	and	θ	=	π.

In	the	following	text,	we	calculate	the	power	radiated	by	an	accelerated	charge.	To	do
this,	it	is	necessary	to	integrate	S	over	the	surface	of	a	sphere	of	radius	r:

P=∮SdA=Z0∫0π∫02π(qa sinθ4πrc)2r2sinθ dθdφ=16πε0q2a2c3. (10.5)

Thus,	 the	 total	energy	flow	 through	 the	sphere	does	not	depend	on	 the	distance	r	of	 the
charge.	If	the	charge	follows	a	simple	harmonic	oscillation	described	by	z(t)	=	z0	cos	ωt,
its	acceleration	is	defined	as	a=d2z/dt2=−z0ω2cosωt.	Thus,

(qa)2=(qz0ω2cosωt)2=(p0ω2cosωt)2, (10.6)

where	p0	=	qz0	 is	 the	magnitude	of	 the	electric	dipole	moment	created	by	the	oscillating
charge.	In	this	case,	the	Poynting	vector	can	be	written	as

S=p02ω4sin2θcos2[	ω(t−r/c)	]16π2ε0r2c3×rr. (10.7)

The	 electric	 field	 lines	 that	 correspond	 to	Eθ	 lie	 in	 a	 plane	 passing	 through	 an	 axis	 of
motion	of	a	charge,	and	those	for	the	magnetic	field	intensity	Hφ	lie	in	a	plane	parallel	the
plane	x0y	(Figure	10.3).

The	propagation	direction	of	the	emitted	waves	is	radially	outward	and	coincides	with
the	radius	vector	r.	Such	field	pattern	is	the	feature	of	transverse	electromagnetic	wave	(T-
type).



FIGURE	10.3	Electric	field	and	magnetic	field	intensity	vectors	of	an	accelerated	moving
charge	in	far-field	zone.

Note	that	the	wave	arrives	at	a	distance	r	from	the	accelerating	charge	in	time	r/c.	For
this	reason,	in	the	expressions	for	the	fields	and	energy	flows,	it	is	necessary	to	take	into
account	retardation	and	to	replace	t	with	t	–	r/c.	Thus,	the	phase	of	an	emitted	wave	in	a
region	 far	 away	 from	 the	 emitter	 (far-field	 zone)	 becomes	 ω(t−r/c)=ωt−k0r.	 For	 higher
frequencies	used	in	practical	applications	(ω∼108−1016s−1),	it	makes	sense	to	speak	only
about	energy	flow	averaged	over	time.	Since	<cos2 [	ω(t−r/c)	]>=1/2,	we	obtain

<S>=p02ω4sin2θ32π2ε0r2c3×rr. (10.8)

From	this,	it	follows	that	the	averaged	over	time	radiation	intensity	is	proportional	to	ω4.

If	we	 integrate	Equation	10.8	 over	 the	 surface	 of	 a	 sphere	 of	 radius	 r,	we	 obtain	 the
mean	power	radiated	by	the	oscillating	charge:

<P>=ω4p0212πε0c3. (10.9)

Taking	 into	 account	 the	 relation	 qa=∂2p/∂t2	 obtained	 in	 Equation	 10.6,	 we	 can	 write
Equations	10.2	and	10.3	for	the	wave	field	of	an	oscillating	electric	dipole	in	the	far-field
zone,	that	is,	at	distances	r	≫	λ	as

Eθ(r,t)=sinθ4πε0c2r∂2p(t−r/c)∂t2,  Hφ(r,t)=sinθ4πcr∂2p(t−r/c)∂t2, (10.10)

where	θ	is	the	angle	between	the	dipole	axis	and	the	line	that	connects	the	dipole	center
with	the	observation	point.

Exercise	10.1

Because	of	energy	emission,	 the	accelerated	electron	loses	energy	and	slows	down.	This
means	 that	 the	 electron	 experiences	 a	braking	 force	 called	 radiative	 friction	 force	 Frad.
Find	an	expression	and	estimate	the	magnitude	of	this	force	for	an	electron	oscillating	at
angular	frequency	ω	=	4	×	1016	s−1	with	an	amplitude	x0	=	0.05	nm.	Assume	that	x	=	x0cos
ωt.

Solution.	For	a	periodic	motion	of	an	electron,	the	work	done	on	the	electron	during	one



period	by	the	radiation	friction	force	is	negative	of	the	radiation	power	given	by	Equation
10.5	integrated	over	one	period	from	0	to	T=2π/ω,	i.e.

∫0TFrad⋅vdt=−∫0Te2a26πε0c3dt=−∫0Te26πε0c3dvdt.dvdtdt,
Integrating	 the	 right	hand	part	of	 the	above	equation	by	parts,	we	see	 that	 the	boundary
term	in	the	integral	by	part	equal	zero	for	the	periodic	motion.

∫0TFrad⋅vdt=−e26πε0c3dvdt.v|0T+∫0Te26πε0c3d2vdt2.vdt=−0+∫0Te26πε0c3dadt.vdt.
It	is	obvious	from	the	above	that

Frad=e26πε0c3dadt.

For	the	periodic	motion	x(t)	=	x0	cos	ωt	we	get

Frad=e2ω3x06πε0c3sinωt=F0 sinωt,

where	F0=e2ω3x0/6πε0c3.	For	 the	oscillation	frequency	ω	=	4	×	1016	 s−1	and	x0	=	0.05
nm,	we	obtain	the	amplitude	of	radiation	friction	force	equal	to	F0	≈	1.82	−10−14	N.

10.2		RADIATION	EMITTED	BY	AN	ELECTRIC	DIPOLE
(HERTZ	ANTENNA)

The	Hertz	 dipole	 consists	 of	 a	 metal	 conductor	 of	 length	 l,	 through	 which	 flows	 an
alternating	current	I	=	I0	cos	ωt.	Using	thin	wires,	Hertz	constructed	a	symmetric	antenna
on	 the	 ends	 of	 which	 he	 installed	 metal	 spheres	 with	 large	 capacitance.	 Due	 to	 the
concentration	 of	 electric	 charges	 on	 the	Hertz	 dipole	 ends,	 the	 current	 amplitude	 varies
slightly	along	 the	wire	and	 the	antenna	behaves	 like	a	dipole	with	a	 length	equal	 to	 the
length	of	the	metal	conductor.

As	we	obtained	earlier,	 the	accelerated	charge	and	 the	 time-varying	dipole	have	 three
field	components—the	radial	component	Er	of	E,	azimuthal	component	Hφ(t)	of	H,	and
tangential	 (or	 polar)	 component	Eθ(t)	 of	E.	 The	 electric	Eθ(t)	 and	magnetic	Hφ(t)	 field
components	depend	on	 time	and	on	angle	θ.	The	radial	component	Er	 is	 time	and	angle
independent	 for	 large	 distances	 from	 the	 source.	 Thus,	 we	 can	 conclude	 that	 the
accelerated	charge	and	the	time-varying	dipole	create	a	spherical	wave	in	space	(they	are
the	sources	of	electromagnetic	waves).	The	criterion	for	determining	the	type	of	field	zone
is	based	on	the	value	of	k0r.	If	k0r	≪	1	(i.e.,	r	≪	λ),	we	are	in	the	near-field	zone;	if	on	the
other	hand	k0r	≫	1	(i.e.,	r	≫	λ),	we	are	in	the	far-field	zone.

In	the	near-field	zone,	the	wave	field	amplitude	decreases	very	rapidly	with	increasing
distance	from	the	emitter.	We	do	not	consider	this	zone	in	details.	Electric	and	magnetic
fields	 differ	 by	 a	 factor	 i = −1,	 that	 is,	 they	 are	 shifted	 in	 phase	 by	π/2.	Therefore,	 if	 at
some	time	t	the	magnetic	field	intensity	is	minimum,	then	the	electric	field	is	maximum.
The	Poynting	vector	S	=	E	×	H	has	two	components:	Sr	and	Sθ.	The	instantaneous	values
of	these	components	can	be	expressed	as

Sr=Eθ0 sinωt⋅Hφ0 cosωt=12Eθ0⋅Hφ0 sin 2ωt,Sθ=Er0 sinωt⋅Hφ0 
cosωt=12Er0⋅Hφ0 sin 2ωt. (10.11)



From	 these	 equations,	 it	 is	 seen	 that	 both	 components	 vary	 with	 time	 as	 sin	 2ωt.	 The
average	value	of	each	components	of	the	Poynting	vector	over	one	period	is	zero,	that	is,

<Sr,θ>=1T∫0TSr,θ(t)dt=0. (10.12)

Thus,	 in	the	near-field	zone,	there	is	no	net	transmission	of	energy	but	the	movement	of
the	field	energy	has	an	oscillatory	character	instead.

In	 the	 far-field	 zone,	 the	wave	 field	 components	Hφ	 and	Eθ	 of	 a	wave	 emitted	 by	 a
Hertz	dipole	are	nonzero:	 the	radial	component	Er	 is	 time	 independent,	and	so	 it	can	be
neglected	 in	 the	 consideration	 of	 the	 wave	 process.	 The	 instantaneous	 values	 of	 the
components	Eθ	and	Hφ	at	the	distance	r	from	the	dipole	can	be	written	as

Eθ=E0(r)sin(ωt−k0r),  Hφ=H0(r)sin(ωt−k0r), (10.13)

where	the	amplitudes	of	the	corresponding	fields	decrease	as	r−1	and	are	given	by

E0(r)=Z0I0lω4πcrsinθ,   H0(r)=I0lω4πcrsinθ. (10.14)

In	the	far-field	zone,	the	Poynting	vector	has	only	a	radial	component	S=Sr=Eθ⋅Hφ.	The
instantaneous	value	of	this	component	has	the	form

S=E0 sin(ωt−k0r)⋅H0 sin(ωt−k0r)=E0H0 sin2 (ωt−k0r). (10.15)

The	 instantaneous	 value	 of	 the	 Poynting	 vector	 is	 always	 positive.	 This	means	 that	 the
wave	field	energy	moves	only	in	one	direction	from	the	emitter	outward	and	represents	the
energy	of	 the	emitted	electromagnetic	wave.	Thus,	 the	average	value	of	 the	energy	 flux
density	over	one	period	is

<S>=E02H02=Z02(I0lω4πrcsinθ)2. (10.16)

The	 average	 energy	 flux	density	 over	 one	period	determines	 the	 emitted	power	density,
which	can	be	represented	as

Prad=I02l2k0312πωε0. (10.17)

According	to	this	expression,	the	radiation	power	Prad	is	proportional	to	the	square	of	the
amplitude	 of	 the	 alternating	 current	 flowing	 through	 the	 emitter.	 There	 is	 analogy	 of
Equation	 10.17	 for	 radiation	 power	 Prad	 with	 the	 conventional	 equation	 for	 power
dissipated	on	an	active	resistor	R	 that	carries	an	alternating	current	 I	=	 I0cos	ωt,	 that	 is,
with	P=I02R/2.	Therefore,	the	power	of	radiation	can	be	expressed	as

Prad=12I02Rrad, (10.18)

where	Rrad=l2k03/6πωε0	is	the	resistance	of	radiation,	which	in	the	theory	of	antennas	is



widely	used	for	the	estimation	of	the	resistance	of	antennas.

The	normalized	directional	characteristic	of	an	emitter	is	the	function

F(θ,φ)=sin θ, (10.19)

whose	graphical	representation	in	space	looks	like	a	donut.	This	function	shows	that	in	the
direction	 θ	 =	 π/2	 and	 θ	 =	 3π/2	 radiation	 is	 maximum	 and	 in	 the	 directions	 θ	 =	 0,	 π
radiation	vanishes.

Since	<	S	>	does	not	depend	on	the	azimuthal	angle	φ,	in	the	plane	perpendicular	to	the
dipole	axis,	the	Hertz	dipole	is	an	isotropic	emitter.

In	 summary,	 we	 will	 show	 in	 Figure	 10.4	 a	 simplified	 scheme	 of	 generation	 of
electromagnetic	 waves	 by	 a	 Hertz	 dipole.	 The	 electric	 current	 of	 the	 dipole	 with	 a
harmonic	 time	 dependence	 forms	 closed	 field	 lines	 for	 magnetic	 fields.	 In	 turn,	 the
alternating	 magnetic	 field	 leads	 to	 the	 appearance	 of	 closed	 electric	 field	 lines.	 The
electromagnetic	waves	 propagating	 from	 the	 dipole	 axis	 in	 all	 directions	 consist	 of	 the
combination	of	time-dependent	electric	and	magnetic	fields.

FIGURE	 10.4	 Simplified	 picture	 of	 the	 generation	 of	 an	 electromagnetic	 wave	 by	 the
Hertz	dipole.

FIGURE	10.5	Picture	of	the	electric	field	lines	near	a	dipole	at	a	fixed	instant	of	time.

The	pattern	of	the	electric	field	lines	near	the	dipole	obtained	from	the	relations	(10.10)
at	a	fixed	time	is	shown	in	Figure	10.5.	The	magnetic	field	intensity	lines	at	each	point	in
space	 are	orthogonal	 to	 the	 electric	 field	 lines.	Note	 that	many	 simple	 antennas	used	 in
radio	 bands	 of	 long,	medium,	 and	 short	waves	 have	 a	 distribution	 of	 the	wave	 field	 in
space	similar	to	a	field	distribution	of	the	Hertz	dipole.

Exercise	10.2
A	simple	emitter	of	length	l	=	10	cm	is	excited	by	a	current	with	amplitude	I0	=	3	A	and



frequency	f	=	100	MHz.	Determine	the	amplitudes	of	the	electric	field	and	magnetic	fields
intensity	created	by	this	emitter	at	a	point	that	is	located	at	a	distance	of	r	=	4	km	from	the
emitter	at	an	angle	θ	=	π/4	to	the	dipole	axis.

Solution.	The	wavelength	of	the	emitted	waves	is	given	by

λ=vf=cfκκm.

For	air,	κ	=	1,	κm	=	1,	and	λ	=	3	m,	which	is	much	larger	than	the	linear	size	of	the	antenna
l	 =	 10	 cm.	Therefore,	 it	 is	 possible	 to	 consider	 that	 the	 current	 along	 the	 length	 of	 the
emitter	has	a	constant	phase.

Since	r	≫	 λ,	we	can	assume	 that	 the	observation	point	 is	 in	 the	 far-field	zone	of	 the
emitter.	 Using	 formulas	 (10.14),	 valid	 for	 the	 far	 field,	 we	 find	 the	 amplitudes	 of	 the
magnetic	and	electric	fields	at	a	given	distance	from	the	emitter:

H0(R)=I0lω4πcrsinθ=3×0.1×2π×1084π×3×108×4×103sin(π4)≈8.75  μA/m,           
E0(r)=Z0H0(r)=120π×8.75×10−6≈3.3  mV/m.

10.3		RADIATION	OF	AN	ELEMENTARY	MAGNETIC
DIPOLE

Another	 simple	 emitter	 of	 electromagnetic	 waves	 is	 a	 small	 wire	 loop	 that	 carries	 an
alternating	current.	When	the	coil	dimensions	are	small	compared	to	the	wavelength	that
corresponds	 to	 the	 frequency	 of	 the	 alternating	 current,	 (λ	 =	 2πc/ω),	 the	 amplitude	 and
phase	of	the	current	are	practically	the	same	at	all	points	of	the	coil.	As	a	result,	there	is	an
alternating	magnetic	field	that	 is	perpendicular	 to	the	plane	of	 the	coil.	So,	 the	magnetic
field	of	a	horizontal	coil	is	analogous	to	the	electric	field	of	a	vertical	electric	dipole,	and
the	 electric	 field	 of	 the	 coil	 is	 identical	 to	 the	 magnetic	 field	 of	 an	 electric	 dipole.
Therefore,	a	horizontal	coil	with	alternating	current	can	be	treated	as	the	equivalent	of	a
vertical	magnetic	dipole.

At	a	distance	r	from	the	magnetic	dipole,	the	instantaneous	values	of	the	wave	fields	in
the	 far-	 field	 zone	 for	 an	 arbitrary	 direction	 are	 given	 by	 expressions	 analogous	 to
Equation	10.13:

Eφ=E0 cos(ωt−k0r),   Hθ=H0 cos(ωt−k0r), (10.20)

where	the	amplitudes	of	corresponding	fields	are	given	by

E0=Z0I0lmω4πcrsinθ,  H0=I0lmω4πcrsinθ. (10.21)

where

I0	is	the	amplitude	of	current	in	the	coil
the	value	lm	=	k0A	is	interpreted	as	the	length	of	the	magnetic	dipole,	where	A	is	the
area	of	the	coil

Thus,	the	average	value	of	the	energy	flux	density	of	a	wave	emitted	by	the	coil	has	a	form
similar	to	expression	(10.16):



<S>=E02H02=Z02(I0lmω4πrcsinθ)2. (10.22)

Note	the	following	important	point:	the	wave	fields	of	the	electric	and	magnetic	dipoles,
which	have	identical	current	phases,	are	shifted	in	phase	by	an	angle	π/2.	This	is	indicated
by	the	factors	sin(ωt	–	k0r)	and	cos(ωt	–	k0r)	in	Equations	10.13	and	10.20.

For	comparison,	Figure	10.6	shows	the	directions	of	the	electric	field	and	magnetic	field
intensity,	as	well	as	 the	direction	of	 the	propagation	of	wave	energy	flux	for	 the	electric
and	magnetic	dipoles.	In	both	cases,	the	direction	of	the	wave	propagation	coincides	with
the	direction	of	the	position	vector	r	(in	the	figure,	this	vector	lies	in	the	drawing	plane).
The	electric	field	lines	of	the	dipole	Eθ	and	magnetic	field	 lines	of	 the	coil	Hθ	 lie	in	the
plane	 formed	by	axis	z	 and	vector	r,	 and	 they	 are	 perpendicular	 to	r.	 The	 electric	 field
lines	 of	 the	 coil	Eφ	 and	 the	magnetic	 field	 intensity	 lines	 of	 the	 electric	 dipole	→	 are
directed	perpendicularly	to	the	plane	formed	by	axis	z	and	vector	r.

The	curves	around	each	dipole	show	the	relative	change	of	the	field	strength	amplitude
in	 the	plane	of	 each	dipole	 as	 functions	of	 the	polar	 angle	 θ	of	 a	 cylindrical	 coordinate
system	(the	angle	θ	is	counted	from	the	direction	of	the	dipole	axis).	This	change	of	field
is	determined	by	the	factor	sin	θ.	Along	the	axis	of	the	coil	(as	well	as	along	the	axis	of	the
electric	dipole),	no	 radiation	 is	emitted,	as	 for	 the	direction	sin	θ	=	0.	The	maximum	of
radiation	lies	in	the	coil	plane,	that	is,	in	the	equatorial	plane	of	the	magnetic	dipole.

FIGURE	10.6	Wave	structure	in	the	far-field	zone	of	electric	(a)	and	magnetic	(b)	dipoles.

Exercise	10.3
Find	 the	radiation	power	Prad	and	 the	 radiation	resistance	Rrad	 in	 the	 far-field	zone	of	a
magnetic	dipole	that	has	the	form	of	a	square	loop.	In	the	frame	with	sides	b	=	10	cm,	we
generate	an	alternating	current	with	amplitude	I0	=	2	A	and	frequency	f	=	150	MHz.	The
magnetic	 dipole	 is	 placed	 in	 air.	 Express	 your	 result	 in	 terms	 of	 the	wavelength	 of	 the
emitted	wave.

Solution.	For	an	arbitrary	direction	of	emission,	at	a	distance	r	from	the	magnetic	dipole,
the	 instantaneous	 values	 of	 the	 wave	 fields	 in	 the	 far-field	 zone	 are	 determined	 by
Equations	10.20.	Since	ω=2πc/λ,	the	amplitudes	of	these	fields	can	be	written	as

E0=Z0I0lmω4πcrsin θ=Z0I0lm2λrsin θ,H0=I0lmω4πcrsin θ=I0lm2λrsinθ,

where

lm=k0A=ωA/c	is	the	magnetic	dipole	length



A	=	b2	is	the	loop	area

The	energy	flux	density,	that	is,	the	Poynting	vector	S	=	E	×	H,	in	a	far-field	zone	has	only
a	radial	component	Sr.	Its	average	value	over	one	period	is

<S(θ)>=1T∫0TSr(t)dt=E02H02=Z02(I0lm2λrsin θ)2.

The	total	flux	of	the	radiated	power	is	obtained	by	integrating	the	flux	density	<	S(θ)	>	on
the	surface	of	a	sphere	of	radius	r:

Prad=∮<S(θ)>dA=Z02(I0lm2λ)2∫0π∫02π(sin θr)2r2sin θ dθ dφ        =πZ0(I0lm2λ)2∫0πsin3θ 
dθ=4π33(bλ)4I02Z0.

Here,	the	area	element	is

dA=r2sin θ⋅dθ⋅dφ.
It	 is	 seen	 that	 the	 total	 energy	 flux	 through	 the	 chosen	 sphere	 does	 not	 depend	 on	 the
distance	to	the	loop.	Since	the	surrounding	medium	is	air,	 the	wavelength	of	the	emitted
wave	is	λ	=	c/f	=	2	m	and	Z0	=	377	Ω,	we	get:

Prad=160π4(bλ)4I02=0.39W.

Using	 the	 analogy	with	 the	 expression	 for	 the	 alternating	 current	 power	dissipated	by	 a
resistance	Rrad,	the	radiation	power	can	be	represented	in	the	following	form:

Prad=12I02Rrad,

where	the	radiation	resistance	is	given	by

Rrad=8π33(bλ)4Z0=0.19Ω.

10.4		DIRECTIONAL	DIAGRAM
In	 practice,	 for	 some	 situations,	 it	 is	 necessary	 to	 have	 an	 antenna	 emitting	 uniform
radiation	 with	 equal	 intensity	 in	 all	 directions.	 In	 other	 situations,	 it	 is	 necessary	 to
concentrate	 the	 radiated	 electromagnetic	 energy	 in	 certain	 directions,	 that	 is,	 to	 use
directional	antennas.	A	visual	representation	of	 the	distribution	of	 the	radiated	energy	in
space	 is	 given	 by	 the	 amplitude	 characteristic	 of	 the	 pattern	 that	 is	 determined	 by	 the
dependence	of	the	electric	E	or	magnetic	H	fields,	generated	by	the	antenna,	on	azimuthal
and	 polar	 angles	 φ	 and	 θ,	 respectively.	 The	 graphic	 representation	 of	 the	 directional
characteristic	 of	 field	 is	 called	 a	directional	diagram.	 The	 space	 directional	 diagram	 is
represented	in	the	form	of	a	surface,	E(θ,	φ)	or	H(θ,	φ).	For	convenience,	we	will	use	here
only	 E(θ,	 φ)	 diagram	 unless	 we	 specifically	 indicate	 otherwise.	 Plotting	 such	 spatial
diagram	is	cumbersome.	This	is	why	the	directional	diagrams	are	often	plotted	in	a	certain
plane,	so	they	become	a	function	of	only	one	angle,	that	is,	E(φ)	or	E(θ).	This	definition
corresponds	to	the	directional	diagram	of	the	field.	In	some	cases,	it	is	important	to	know
the	dependence	of	the	power	flux	density	as	a	function	of	angles,	so	the	power	flux	density
directional	diagram	 is	used.	The	power	 flux	density	 is	 the	power	passing	 through	a	unit
area	 perpendicular	 to	 the	 direction	 of	 wave	 propagation.	 Therefore,	 the	 directional
diagram	of	power	is	proportional	to	E2(θ,	φ).

The	directional	diagram,	for	which	the	maximum	value	of	the	function	E(θ,	φ)	is	set	to



unity,	is	called	the	normalized	directional	diagram	and	is	denoted	as	F(θ,	φ).	The	F(θ,	φ)
diagram	is	obtained	by	dividing	the	values	of	the	nonnormalized	diagram	by	its	maximum
value,	that	is,

F(θ,φ)=E(θ,φ)Emax(θ,φ).

We	will	discuss	several	directional	diagrams	that	are	often	observed	in	practice.	As	it	was
shown	 earlier,	 the	 simplest	 emitters	 in	 the	 form	 of	 elementary	 electric	 and	 magnetic
dipoles	have	the	toroidshaped	directional	diagram	given	in	Figure	10.7.	For	this	diagram,
the	function	F(θ,	φ)	=	F(θ)	=	sin	θ	does	not	depend	on	the	azimuthal	angle.	From	this,	it
follows	that	radiation	is	uniformly	distributed	over	the	entire	0–2π	azimuthal	angle	range.

Figure	 10.8	 shows	 an	 example	 of	 a	 unidirectional	 diagram	 that	 corresponds	 to
electromagnetic	 waves	 produced	 by	 a	 directional	 antenna.	Most	 of	 the	 radiation	 of	 the
antenna	 with	 such	 directional	 diagram	 is	 concentrated	 within	 a	 small	 angle.	 Fan
directional	 diagrams	 are	 also	 widely	 used.	 Such	 diagram	 is	 compressed	 in	 one	 plane
(usually	horizontal)	and	extended	in	another	direction.

The	angle	2θ0.5	is	introduced	to	estimate	the	directional	effect	of	an	antenna.	The	angle
2θ0.5	is	the	angle	between	the	directions,	along	which	the	field	magnitude	decreases	by	a
factor	of	2	with	respect	to	the	maximum	of	radiation	at	the	main	lobe	center,	and	thus,	the
power	flux	 is	 reduced	by	a	factor	of	2	with	respect	 to	 the	maximum	(Figure	10.9).	This
angle	is	referred	to	as	the	width	of	diagram.

Antennas	also	differ	in	their	operating	ranges.	Operating	wavelength	range	is	the	range
within	 which	 the	 antenna	 retains	 its	 essential	 characteristics	 (directed	 action,	 the
polarization	 structure	 of	 the	 field)	 with	 a	 given	 accuracy.	 If	 the	width	 of	 the	 operating
range	does	not	exceed	a	few	percent	of	the	middle	wavelength,	such	an	antenna	is	called
narrow-range	antenna;	the	antennas	that	have	an	operating	range	of	a	few	tens	of	a	percent
of	the	middle	wavelength	and	more	are	called	wide-range	antennas.

FIGURE	10.7	Toroidal	directional	diagram	of	a	dipole	(a)	and	details	of	dependence	of
field	on	angle	φ	(b)	and	(d)	and	on	angle	θ	(c)	and	(d).



FIGURE	10.8	Unidirectional	diagram	of	radiation	by	a	directional	antenna.

FIGURE	10.9	Definition	of	the	directional	diagram	width.

Note	that	the	view	of	the	antenna	pattern	is	significantly	affected	by	the	Earth’s	surface,
which	has	 a	 rather	high	 conductivity.	Thus,	 if	 a	 horizontal	 antenna	 is	 located	 above	 the
ground	at	a	height	that	is	shorter	compared	to	the	wavelength,	then	there	is	practically	no
radiation	 as	 the	 antenna	 radiation	 is	 suppressed	 by	 its	 mirror	 image	 formed	 by	 the
conducting	ground.	Increasing	antenna’s	distance	from	the	ground	results	in	the	increase
of	 the	 distance	 between	 the	 antenna	 and	 its	mirror	 image.	When	 this	 distance	 becomes
comparable	to	the	wavelength,	the	two	wave	sources	radiate	in	antiphase	(i.e.,	their	phases
are	shifted	by	π/2).	The	form	of	the	directional	diagram	varies	depending	on	the	height	of
the	antenna	from	the	ground.

FIGURE	10.10	Directional	diagrams	of	a	half-wave	Hertz	dipole	antenna	located	above
the	Earth	in	the	planes	perpendicular	(a)	and	parallel	(b)	to	its	axis	(insets	 in	[a]	and	[b]
show	orientation	of	the	antenna).

Directional	 diagrams	 of	 the	 half-wave	 Hertz	 dipole	 located	 at	 a	 height	 h	 above	 the
ground	are	shown	in	Figure	10.10	 in	 the	planes	perpendicular	 (a)	and	parallel	 (b)	 to	 the
antenna	 axis.	 A	 half-wave	 symmetric	 Hertz	 dipole	 whose	 length	 is	 equal	 to	 a	 quarter
wavelength	 (total	 length	of	 the	 antenna	 is	 equal	 to	half	 the	wavelength)	 consists	of	 two



identical	 rectilinear	 conductors.	 The	 driving	 alternating	 current	 source	 is	 connected
between	the	two	conductors.	The	above	diagrams	show	that	with	an	increasing	height,	the
number	of	lobes	in	the	directional	diagram	and	simultaneously	the	radiation	directionality
increase.	The	higher	the	antenna	is	suspended,	the	closer	to	the	horizon	a	lower	lobe	will
be.

Exercise	10.4
Plot	directional	diagrams	of	the	symmetric	antenna	for	different	ratios	of	 its	 length	2l	 to
length	 of	 the	 emitted	 wave	 λ:	 l/λ	 =	 0.25,	 0.5,	 0.75	 and	 1.	 The	 antenna	 (Figure	 10.11)
consists	of	two	equally	sized	and	shaped	conductors,	between	which	an	alternating-current
generator	is	connected.	The	current	I(z)	has	a	sinusoidal	dependence:	I(z)=I0 sin(k0(l−|	z
|))/sin(k0l),	where	I0	 is	 the	current	in	points	of	a	power	supply	of	the	antenna	(at	z	=	0).
Use	the	following	equation	for	the	electric	field	component	of	the	symmetric	antenna	in	a
point	at	a	distance	r	≫	λ,	located	in	the	far	field	zone:

FIGURE	10.11	The	symmetric	dipole	antenna.

FIGURE	10.12	Directional	diagram	of	antenna	for	different	values	of	l.

E(r,θ,φ)=i60I0rsin(K0l)f(θ,φ)exp(−ik0r),

where	k0=2π/λ	and	the	directional	function	of	radiation	has	the	form

f(θ,φ)=f(θ)=cos(k0l cosθ)−cos(k0l)sin θ.

Solution.	 The	 symmetric	 antenna	 differs	 from	 the	 elementary	 dipole	 of	 Hertz	 by	 a
nonuniform	current	distribution	along	the	length.	From	the	expression	for	the	electric	field
it	can	be	seen	that	the	symmetric	antenna	radiates	spherical	waves	and	it	does	not	possess
directional	properties	 in	 the	plane,	which	 is	perpendicular	 to	 the	dipole	axis.	Directional
properties	of	 the	 radiation	occur	only	 in	a	 tangential	plane	 (in	 the	plane	of	electric	 field
vector).

From	 the	 given	 relations	 it	 follows	 that	 the	 directional	 properties	 of	 the	 symmetric
antenna,	with	a	sinusoidal	current	propagation	in	it,	are	determined	only	by	the	ratio	l/λ.
We	introduce	the	normalized	directional	diagram	of	the	symmetric	antenna:



F(θ)=f(θ)f(π/2)=cos(k0l cosθ)−cos(k0l)(1−cos(k0l))sin θ.

The	directional	diagrams	of	the	symmetric	antenna	with	different	ratios	l/λ	are	represented
in	Figure	10.12.

10.5		TYPES	OF	ANTENNAS
A	transmitting	antenna	is	a	device	that	transforms	the	energy	of	a	high-frequency	current
into	the	energy	of	electromagnetic	waves	emitted	in	a	certain	direction.	The	transmitting
antenna	 should	not	 simply	 radiate	electromagnetic	waves	but	provide	 the	most	 effective
energy	 distribution	 in	 space.	 In	 this	 regard,	 the	most	 important	 property	 of	 transmitting
antennas	 is	 the	 directionality	 of	 a	 field	 radiated	 by	 them.	 Requirements	 to	 the
directionality	of	antenna	range	within	rather	wide	limits—from	a	weak	directionality	(for
radio	 and	 television	 broadcasting)	 to	 sharply	 defined	 directionality	 (for	 distant	 cosmic
radio	 communication,	 radiolocation,	 and	 radio	 astronomy).	 The	 directionality	 of	 an
antenna	allows	increasing	the	field	power	radiated	in	a	given	direction	without	increasing
the	 power	 of	 the	 transmitter.	 A	 proper	 orientation	 also	 reduces	 disturbances	 by	 radio
systems	promoting	a	solution	of	the	electromagnetic	compatibility	problem.	Directionality
can	be	obtained	only	when	the	antenna	dimensions	significantly	exceed	the	wavelength	of
the	emitted	wave.

FIGURE	 10.13	 Transition	 from	 a	 closed	 circuit	 to	 an	 open	 circuit	 antenna:	 (a)	 closed
circuit,	(b)	partially	open	circuit,	and	(c)	open	circuit	antenna.

A	 feeder	 is	 the	 line	 that	 transmits	 power	 from	 the	 generator	 to	 the	 antenna	 (in
transmission	mode)	or	 from	 the	antenna	 to	 the	 receiver	 (in	 reception	mode).	The	 feeder
plays	an	important	role	in	the	operation	of	antennas.	The	wave	resistance	of	the	feeder	has
to	be	matched	with	the	resistance	of	the	antenna	to	reduce	losses.

For	the	understanding	of	the	operating	principle	of	most	types	of	antennas,	we	consider
the	so-called	open	oscillatory	circuit	(Figure	10.13).	Electromagnetic	waves	are	 radiated
by	 conductors	 that	 carry	 a	 high-frequency	 current.	 If	 the	 current	 oscillations	 occur	 in	 a
“closed”	oscillatory	circuit	 consisting	of	a	coil	 and	a	capacitor,	 the	alternating	magnetic
field	 is	 related	 to	 the	 coil,	 and	 the	 alternating	 electric	 field	 is	 concentrated	 in	 the	 space
between	 the	 capacitor	 plates.	A	 closed	 oscillatory	 circuit,	which	 has	 an	 inductor	whose
size	 is	 much	 smaller	 than	 the	 operating	 wavelength,	 practically	 does	 not	 radiate
electromagnetic	 waves	 into	 the	 surrounding	 space.	 In	 the	 closed	 oscillatory	 circuit,	 the
magnetic	field	is	concentrated	inside	the	coil	and	the	electric	field	between	the	capacitor
plates.

If	 we	 change	 the	 geometry	 of	 the	 oscillatory	 circuit,	 by	moving	 the	 capacitor	 plates
apart,	then	electromagnetic	waves	created	by	the	capacitor	plates	will	propagate	in	space.



Thus,	transformation	of	the	closed	oscillatory	circuit	into	an	open	oscillatory	circuit	turns
it	into	an	antenna.	As	the	displacement	current	of	an	open	oscillatory	circuit	covers	large
volume	of	space,	efficient	radiation	of	waves	becomes	possible.	 In	 the	simplest	case,	an
open	oscillatory	 circuit	 is	 a	 rectilinear	 conductor	with	 a	 small	 coil,	which	 is	 inserted	 to
connect	 with	 a	 generator	 or	 receiver.	 An	 antenna,	 obtained	 by	 such	 transformation,	 is
characterized	 by	 geometrical	 symmetry	 and	 is	 called	 a	 symmetric	 antenna.	 It	 has	 a
nonuniform	distribution	of	current	and	voltage	along	its	length.	For	the	antenna	length	l	≈
λ/2,	the	distribution	of	current	and	voltage	has	the	form	shown	in	Figure	10.14.

FIGURE	10.14	Current	and	voltage	distribution	in	an	antenna.

In	practice,	the	asymmetric	antenna,	in	which	the	Earth’s	surface	is	used	as	a	lower	half
of	 a	 dipole,	 is	 also	 widely	 applied.	 This	 becomes	 possible	 due	 to	 the	 relatively	 good
conductivity	of	 the	Earth’s	surface.	Note	also	 that	each	wire	has	 its	own	 inductance	and
capacitance	 distributed	 along	 its	 length.	 Therefore,	 each	 piece	 of	 a	 conductor	 is	 an
oscillatory	 circuit.	 Approximately,	 one	 can	 assume	 that	 each	 meter	 of	 wire	 has	 a
capacitance	of	C	≈	5	pF	and	an	inductance	of	L	≈	2	×	10−6	H.

The	receiving	antenna	 transforms	 the	 energy	 of	 free	 electromagnetic	waves,	 coming
from	a	certain	direction	to	the	energy,	which	enter	through	the	feeder	to	the	receiver	input.
The	directional	properties	in	the	receiving	antennas	increase	the	registered	power,	which
enters	into	the	receiver.

Owing	 to	 the	 reversibility	 of	 electromagnetic	 processes	 that	 occur	 in	 the	 antenna
systems,	it	 is	possible	in	principle	to	use	the	same	antenna	both	for	transmission	and	for
reception.	 However,	 this	 does	 not	 mean	 that	 transmitting	 and	 receiving	 antennas	 are
identical	 in	 design,	 as	 each	 type	 of	 antennas	 has	 its	 own	 design	 features.	 It	 is	 usually
assumed	that	 the	receiving	antenna	is	oriented	 in	space	so	that	a	reception	is	carried	out
from	the	direction	of	the	maximal	reception.

If	the	antenna	is	located	in	the	area	that	has	electromagnetic	waves,	an	emf	appears	at
the	 terminals	 of	 the	 antenna.	 If	we	 connect	 a	 receiver	 to	 the	 antenna	 terminals,	 current
flows	 in	 the	 antenna	 circuit,	 which	 generates	 a	 voltage	 at	 the	 receiver	 input.	 The	 emf
across	a	 receiving	antenna	Ea	depends	on	 the	electric	 field	strength	E	 at	 reception	point
and	also	on	the	form	and	dimensions	of	the	receiving	antenna.	Their	relation	is	given	by
the	expression	Ea	=	haE,	where	ha	is	called	the	operating	height	of	a	receiving	antenna.

Antennas	 can	 be	 classified	 according	 to	 different	 criteria:	 wavelength	 ranges	 and
application	purposes	(for	radio,	radio	broadcasting,	radio	astronomy,	television,	etc.).	It	is
most	 expedient	 to	 classify	 them	 by	 the	 type	 of	 emitting	 elements.	 On	 this	 basis,	 all
antennas	can	be	divided	into	the	following	basic	groups.

Linear	 antennas	 include	 any	 radiating	 system	 of	 small	 cross-sectional	 dimension	 in



which	the	alternating	currents	are	flowing	along	the	system	axis.	This	can	be	either	a	thin
metal	wire,	 in	which	an	alternating	current	 is	excited,	or	a	narrow	slit	 in	a	metal	screen,
between	 the	edges	of	which	an	alternating	voltage	 is	applied.	A	characteristic	 feature	of
the	linear	antennas	is	that	the	current	distribution	along	their	axis	does	not	depend	on	the
wire	configuration.	Therefore,	the	linear	antennas	are	not	always	straight	lines	but	can	also
be	curve,	but	the	radius	of	the	curvature	should	be	small	compared	to	the	total	length	of
the	 antenna	 and	 to	 the	 wavelength.	 These	 antennas	 can	 be	 symmetric	 and	 asymmetric
antennas,	 frame	 antennas,	wire	 antennas	 of	 traveling	wave	 (including	 helical	 antennas),
and	thin	slot	antennas	of	standing	and	traveling	waves.

Examples	of	aperture	antennas	are	the	pyramidal	funnel-shaped	antennas,	the	optical-
type	parabolic	antennas,	lens	antennas,	and	the	open-ended	waveguide	antennas.

Aperture	 antennas,	 for	which	 it	 is	 possible	 to	 define	 some	 bounded	 surface,	 through
which	 the	all	 flow	of	 radiated	 (or	 received)	electromagnetic	energy	passes.	This	 surface
(an	opening,	an	aperture)	 is	often	represented	 in	 the	form	of	a	plane.	Dimensions	of	 the
aperture	are	usually	much	larger	than	the	wavelength.	Examples	of	aperture	antennas	are
pyramidal	 horn	 antennas,	 optical-type	 parabolic	 antennas,	 lens	 antennas,	 and	 radiating
open-ended	waveguide	antennas.

Ground-wave	 antennas	 are	 excited	 by	 electromagnetic	 waves	 propagating	 along	 the
antenna	and	radiate	predominantly	in	the	direction	of	propagation,	an	example	is	the	rod
dielectric	antenna.

All	 three	 types	 of	 antennas	 can	 be	 used	 as	 single	 antennas	 or	 can	 be	 grouped	 in
multielement	 systems.	 In	 particular,	antenna	 lattices	 are	widely	 applied.	 Such	 antennas
consist	 of	 several	 singletype	 emitters	 and	 are	 arranged	 in	 space	 in	 a	 certain	 way	 and
excited	by	one	generator	or	several	coherent	generators.	Here,	it	is	possible	to	receive	both
required	 spatial	 distribution	 of	 emitted	 energy	 and	 required	 control	 in	 time	 by	 this
distribution.	 Typical	 antenna	 lattice	 is	 the	 VHF	 director	 antenna,	 which	 represents	 the
linear	array	of	half-wave	symmetric	antennas.

Exercise	10.5
A	receiving	antenna	consists	of	a	 rectangular	 frame	with	dimensions	a	=	30	cm,	b	 =	 15
cm.	The	received	signal	frequency	f	=	10	MHz.	The	magnetic	field	is	perpendicular	to	the
plane	of	the	frame,	and	the	effective	value	of	the	magnetic	field	intensity	of	the	signal	at
the	location	of	the	frame	is	H	=	80	mA/m.	Find	the	greatest	emf	induced	by	a	signal	in	the
frame.	Determine	the	lowest	frequency	at	which	the	signal	can	be	received	if	the	receiver
sensitivity	is	15	μV.

Solution.	Let	us	direct	the	x-axis	along	one	side	of	the	frame	and	the	y-axis	along	its	other
side.	For	a	plane	wave	propagating	along	the	x-axis,	the	expressions	for	the	fields	can	be
written	as

Ey(x,t)=Ey(x)exp(iωt),   Hz(x,t)=Hz(x)exp(iωt),

where

Ey(x)=E0 exp(−ik0x),   Hz(x)=H0 exp(−ik0x).

The	wave	impedance	of	air	is



Z0=μ0ε0=120πΩ.

We	assume	that	in	the	frame	plane,	the	magnetic	field	(at	x	=	0)	is	Hz(0)	=	H0	=	80	μA/m,
and	the	electric	field	is

Ey(0)=E0=Z0H0≈3×10−2V/m.

The	wavelength	and	wave	propagation	constant	in	air	are

λ=cf=30 m,  k0=ωc=2πfc=2πλ≈0.21 m−1.

When	the	wave	propagates	along	the	large	side	of	the	frame,	the	change	of	its	phase	is	k0a
=	2πa/λ	=	0.063	rad.	If	you	turn	the	frame	in	the	plane	by	90°,	the	change	in	phase	of	the
oscillation	will	be	k0b	=	0.0315	rad.	We	calculate	the	emf	induced	in	the	frame	by	means
of	the	expression

Ei=∮LEdI,

where	 an	 integration	 is	 carried	 out	 along	 the	 frame.	 The	 direction	 of	 a	 path	 tracing
corresponds	to	the	right-hand	rule	relative	to	the	direction	of	vector	H.	For	z	=	a,	the	field
Ey(a)=E0 exp(−ik0a),	so	the	induced	emf	in	the	frame	is	given	by

Ei=bE0 exp(−ik0a)−bE0=bE0[	exp(−ik0a)−1	].

In	this	example,	k0a	=	0.063	≪	1.	Therefore,	 to	calculate	 the	exponent,	we	use	 the	first
two	terms	of	the	expansion

exp(−ik0a)≈1−ik0a.

As	a	result,	the	emf	induced	in	the	antenna	is	determined	by	the	expression

Ei=−ik0abE0=−ik0abZ0H0=−i×0.063×0.15×120π×80×10−6=−i×0.285 mV.

The	complex	value	of	emf	means	a	phase	shift	of	emf	with	respect	to	the	current	by

Δφ=π2as exp(−iπ2)=−i.

The	induced	emf	is	proportional	to	the	frequency,	that	is,

Ei=−ik0abZ0H0=−i2πfabZ0H0/cEif=Eminfmin=−i2πfabZ0H0c=const.

Therefore,	the	minimum	frequency,	at	which	this	frame	can	be	used	as	a	receiving	antenna
for	the	receiver	with	sensitivity	Emin,	,	is

fmin=EminfEi=0.53 MHz.

10.6		HORN	ANTENNAS
As	an	example	of	the	aperture	antenna,	we	will	consider	a	waveguide	horn	antenna.	Some
advantages	of	these	antennas	are	design	simplicity,	small	losses,	and	well-controlled	wave
length.	The	efficiency	of	 the	horn	antennas	 is	very	high	(close	 to	100%).	This	results	 in
their	broad	application	in	the	millimeter,	centimeter,	and	decimeter	ranges.	Such	antennas
can	 form	 the	 directional	 diagrams	 of	 a	width	 range	 from	 100°	 to	 140°	 (when	 a	 special
opening	 is	 used)	 to	 10°–20°	 in	 pyramidal	 horns.	 Possibility	 of	 further	 narrowing	 of	 the
horn	diagram	is	limited	by	the	necessity	of	sharp	increase	of	its	length.

A	 horn	 antenna	 is	 formed	 by	 a	 smooth	 increase	 in	 transverse	 dimensions	 of	 a



waveguide.	Since	rectangular	and	circular	waveguides	are	usually	used,	the	horns	formed
from	 these	 waveguides	 are	 the	most	 widely	 applied	 (Figure	 10.15).	 If	 broadening	 of	 a
rectangular	 waveguide	 occurs	 only	 in	 one	 plane,	 then	 the	 horn	 obtained	 in	 this	 way	 is
called	sectoral	horn.	Sectoral	horns,	obtained	by	broadening	of	a	rectangular	waveguide	in
one	 of	 the	 two	 planes	 (horizontal	 or	 vertical),	 include	H-plane	 sectoral	 horn	 (a)	 and	E-
plane	sectoral	horn	(b).

Sectoral	horns	allow	narrowing	the	directional	diagram	of	the	horn	antenna	only	in	that
plane	in	which	broadening	is	carried	out.	In	other	plane,	the	directional	diagram	remains
the	same	as	that	of	the	open	end	of	the	waveguide	of	which	the	horn	was	formed.	Thus,
the	sectoral	horns	create	fan-type	directional	diagrams.

FIGURE	10.15	Types	of	 horn	 antennas:	 (a)	H-plane	 sectoral	 horn,	 (b)	E-plane	sectoral
horn,	 (c)	pointed	pyramidal	horn,	 (d)	wedge	pyramidal	horn,	 (e)	combined	horn,	and	(f)
conical	horn.

In	order	to	narrow	the	directional	diagram	in	both	planes,	a	pyramidal	horn	is	applied.	It
is	 formed	by	broadening	of	 the	waveguide	 in	 both	planes	 (c,	 d).	For	 pointed	pyramidal
horn,	the	edges	meet	in	one	point	(c),	and	for	wedge	horn,	the	edges	meet	in	a	line	(d).

Broadening	 of	 the	 waveguide	 in	 both	 planes	 can	 be	 made	 not	 simultaneously	 but
successively.	The	resulting	horn	is	called	a	combined	horn	(e).	This	horn	can	be	matched
better	 than	 the	pyramidal	 horn,	 but	 because	of	 its	 design	 complexity,	 it	 is	 seldom	used.
Broadening	of	a	circular	waveguide	forms	a	conical	horn	(f).

Since	the	horn	is	formed	as	a	result	of	a	smooth	increase	in	the	waveguide	cross	section,
the	 oscillations	 that	 are	 excited	 in	 it	 are	 of	 the	 same	 type	 as	 in	 the	 entrance	 feeding
waveguide.	In	Figure	10.16,	the	configuration	of	an	electromagnetic	field	in	a	pyramidal
horn	antenna	is	shown;	the	antenna	is	fed	from	the	waveguide	excited	by	a	wave	H10.

As	seen	from	Figure	10.16,	the	oscillations	excited	in	the	horn	are	of	the	same	type	as
that	in	the	waveguide.	However,	the	wave	front	at	the	transition	from	the	waveguide	to	the
horn	is	transformed	from	flat	into	spherical.	The	line	where	the	wave	front	meets	with	the
plane	of	the	longitudinal	section	of	the	horn	has	the	form	of	an	arc	of	a	circle,	which	has
its	center	in	the	horn	top	O.	In	the	plane	E,	the	wave	front	meets	with	the	horn	walls	at	an
angle	of	90°,	 since	 the	 tangential	component	of	electric	 field	on	a	conducting	surface	 is
equal	to	zero.

An	increase	in	the	antenna	aperture	leads	to	a	decrease	in	the	main	lobe	width	and	an
increase	in	the	antenna	directional	effect.	The	greater	is	the	angle	of	the	horn	aperture,	the
greater	 is	 the	path	difference	between	the	central	and	peripheral	rays	and	the	greater	 the
phase	distortions	φmax=kΔr	at	its	edges.	Violation	of	equiphase	conditions	of	the	radiating



surface	leads	to	distortions	of	a	horn	directional	diagram.	As	a	consequence,	the	main	lobe
of	 directional	 diagram	 widens,	 the	 intensity	 of	 the	 side	 lobes	 increases,	 and	 the	 zero
between	 the	 lobes	disappears.	 In	 the	plane	E	 (at	 an	uniform	amplitude	distribution),	 the
directional	diagram	is	distorted	more	than	in	the	plane	H.

FIGURE	10.16	Electromagnetic	field	distribution	in	the	pyramidal	horn.

In	 the	 design	 of	 the	 horn	 antenna,	 the	 following	 initial	 basic	 data	 are	 optimized:
wavelength	 λ	 or	 range	 of	 operating	wavelengths	 λmin,	…,	 λmax,	 radiation	 power	P,	 and
directional	diagram	width	at	half-power	level	2θ0.5	and	2φ0.5.

Exercise	10.6
Determine	 the	 phase	 distribution	 in	 the	 aperture	 plane	 of	 the	 H-plane	 sectoral	 horn
antenna.	The	width	of	the	horn	aperture	is	L,	the	size	of	wide	wall	of	the	waveguide	is	a,
and	the	depth	of	the	horn	is	R	(Figure	10.17).

Solution.	 In	 the	 horn	 cavity	 in	 a	 plane	 E,	 the	 wave	 front	 is	 flat;	 therefore,	 for	 this
direction,	 the	phase	 is	constant	 in	 the	plane	of	 the	wave	 front.	To	determine	 the	 type	of
phase	distribution	in	a	plane	H,	we	will	consider	the	geometric	relationships	in	the	horn.
At	the	horn	edges,	the	wave	front	lags	behind	the	front	at	the	horn	center.	The	maximum
path	difference	can	be	determined	from	the	following	geometric	relationships:

R2+(L2)2=(R+Δr)2=R2+2RΔr+(Δr)2.

Since	 Δr≪R and (Δr)2≪2RΔr, then (L/2)2≈2RΔr.	 Therefore,	 the	 maximum	 path
difference	is

Δrmax≈(L/2)22R.

The	maximum	phase	difference	of	aperture	in	the	H	plane	is

φmax=k0Δrmax=k0(L/2)22R=πL24λR.



FIGURE	10.17	H-plane	horn	antenna.

The	equation	that	gives	the	phase	change	of	aperture	in	the	H	plane	(phase	distribution)	is
obtained	 if	 in	 this	 expression	 we	 substitute,	 instead	 of	 the	 maximum	 value	 of	 the
coordinate	xmax	=	L,	the	current	coordinate	−L≤x≤L:

φ(x)=πx24λR.

Thus,	 along	 the	x-axis,	 the	 phase	 is	 proportional	 to	 the	 square	 of	 x.	 The	 square	 law	 of
phase	change	 in	 the	aperture	widens	 the	main	 lobe	of	 the	directional	diagram	compared
with	a	uniform	distribution.

PROBLEMS
10.1	According	 to	 the	classical	model	of	 the	hydrogen	atom,	 the	electron
revolves	around	the	nucleus	(proton)	in	a	circular	orbit	whose	radius	is	rB	=
0.53	×	10−10	m.	Determine	 the	 energy	 that	 an	 electron	 loses	 by	 radiation
per	unit	time	(radiant	power).	Estimate	the	time	required	for	an	electron	to
lose	all	its	energy.	(Answer:	|	E	|≈2.17×10−12J, τ≈ 4.70×10−5s.)
10.2	Compare	the	magnitude	of	the	electrostatic	field	of	a	stationary	proton
with	the	wave	electric	field,	which	is	created	in	the	far-field	(wave)	zone	by
a	rotating	electron	in	its	first	Bohr	orbit	in	a	hydrogen	atom.	Estimate	the
values	of	these	fields	at	a	distance	of	1.00	cm	from	the	atom	(r	≫	rB	=	5.30
×	 10−11	 m)	 in	 a	 direction	 perpendicular	 to	 the	 orbital	 plane.	 (Answer:
Ep/Ee0≈10−4, Ee0≈0.14 V/m.)
10.3	An	indoor	radio	antenna	 is	a	straight	wire	of	 length	 l	=	0.50	m.	The
frequency	 f	of	 the	emitted	signal	 is	equal	 to	2.00	MHz.	The	amplitude	of
the	electric	field	at	the	location	of	the	antenna	is	E	=	5.00	mV/m.	Assume
that	 the	 receiving	 antenna	 is	 in	 the	 far-field	 zone	 of	 the	 transmitter	 at	 a
distance	R	≫	 λ	 and	 orient	 the	 antenna	 so	 that	 the	 induced	 emf	 in	 it	 is
maximized.	 Calculate	 the	 amplitude	 of	 the	 induced	 emf.	 (Answer:
Emax=2.5 mV.)
10.4	An	antenna	consists	of	a	circular	coil	of	diameter	d	=	0.25	m,	which	is
placed	 in	 an	 electromagnetic	 field	 of	 frequency	 f	 =	 1.50	 MHz.	 The
amplitude	of	the	electric	field	in	the	center	of	the	coil	is	E0	=	0.15	mV/m.
Locate	 the	coil	so	 that	 the	 induced	emf	 in	 it	 is	maximized.	Determine	 the
amplitude	of	this	emf.	(Answer:	Emax=2.5 mV.)
10.5	Find	the	ratio	of	the	electromagnetic	wave	powers	emitted	by	electric
dipoles,	which	have	the	same	magnitude	of	charge	and	the	same	amplitude
of	charge	oscillations	if	the	oscillation	frequency	ratio	of	the	two	waves	is
equal	to	10.	(Answer:	The	ratio	is	equal	to	104.)
10.6	A	receiving	antenna	consists	of	a	rectangle	with	sides	a	=	0.40	m	and
b	=	0.20	m.	The	frequency	 f	of	 the	received	signal	 is	equal	 to	10.0	MHz;
the	 amplitude	H	 of	 the	magnetic	 intensity	 at	 the	 location	 of	 the	 frame	 is
equal	 to	 0.10	 mA/m.	 Find	 the	 lowest	 frequency	 at	 which	 the	 signal
reception	 by	 this	 antenna	 is	 still	 possible	 if	 the	 receiver’s	 sensitivity	 is
equal	to	20.0	μV.	(Answer:	fmin	=	0.32	MHz.)



10.7	The	amplitude	of	the	electric	field	of	a	wave	emitted	by	a	Hertz	dipole
in	the	equatorial	plane	at	a	distance	r	=	6.00	km	is	Emax	=	2.00	×	10−3	V/m.
Find	the	total	power,	Prad,	of	radiating	dipole.	(Answer:	Prad	=	1.60	W.)
10.8	 Find	 the	 current	 in	 the	 elementary	 electric	 dipole	 (Hertz	 dipole)	 of
length	equal	to	15.0	cm	if	at	the	point	with	coordinates	r	=	10.0	km	and	θ	=
π/2	 the	 electric	 field	 amplitude	 is	 E0	 =	 10−4	 V/m.	 The	 antenna	 is
perpendicular	 to	 the	wave	 front	 and	 the	 oscillation	 frequency	 is	 equal	 to
0.10	GHz.
10.9	 Find	 the	 radiation	 resistance	 of	 an	 elementary	 electric	 dipole	 (Hertz
dipole)	of	length	l	=	10.0	cm	emitting	a	wave	of	wavelength	λ0	=	1.50	m.
Find	the	radiation	power	if	the	amplitude	of	the	current	in	the	dipole	is	I0	=
1.00	A.
10.10	 Find	 the	 field	 components	 of	 an	 elementary	 electric	 dipole	 (Hertz
dipole)	of	length	l	=	10.0	cm	in	the	equatorial	plane	at	a	distance	of	r	=	100
m	if	the	oscillation	frequency	f	=	0.60	GHz.	The	amplitude	of	the	current	in
the	emitter	is	I0	=	8.00	A.
10.11	A	 square	 frame	with	 sides	 equal	 to	 15.0	 cm	 emits	 electromagnetic
waves	for	which	the	electric	field	in	the	equatorial	plane	has	an	amplitude
E0	 =	 10−3	 V/m	 at	 a	 distance	 r	 =	 5.00	 km.	 Determine	 the	 current	 in	 the
frame	if	the	wavelength	of	the	emitted	radiation	λ0	=	3.00	m.	(Answer:	I0	=
1.69	A.)
10.12	 Find	 the	 radiated	 power	 of	 an	 elementary	 magnetic	 dipole	 if	 at	 a
distance	 r	 =	 2.00	 km	 the	 electric	 field	 of	 the	 emitted	 wave	 has	 the
amplitude	Emax	=	5.00	mV/m	in	the	equatorial	plane.	(Answer:	Prad	=	1.11
W.)



Section	IV
Advanced	Topics	in	Electromagnetics	and	Optics



11Electromagnetic	Waves	in	Gyrotropic
Media

In	 the	 previous	 chapter,	 we	 considered	 the	 aspects	 of	 wave	 propagation	 in	 anisotropic
media,	 for	 which	 the	 dielectric	 permittivity	 tensor	 is	 symmetric.	 Such	 tensor	 in	 the
coordinate	 system	 that	 coincides	 with	 the	 principal	 axes	 is	 transformed	 to	 a	 diagonal
tensor.	Anisotropic	media,	in	which	tensors	of	dielectric	and/or	magnetic	permeability	are
antisymmetric	 and	 in	 the	 absence	 of	 absorption	 have	 purely	 imaginary	 nondiagonal
components,	 are	 known	 as	 gyrotropic.	 Such	 media	 have	 the	 ability	 to	 rotate	 the
polarization	plane	of	 linearly	polarized	electromagnetic	waves,	which	propagate	 through
it.

A	 medium,	 which	 exhibits	 gyrotropic	 properties	 under	 the	 influence	 of	 a	 constant
external	magnetic	field,	is	called	magnetoactive.	Examples	of	such	media	are	magnetized
plasma	and	magnetized	ferrites.	The	magnetoactive	plasma	is	an	example	of	a	gyroelectric
medium	for	which	the	tensor	of	dielectric	permittivity	is	antisymmetric	and	the	magnetic
permeability	 is	 scalar.	 For	 a	 magnetized	 ferrite,	 the	 magnetic	 permeability	 is	 an
antisymmetric	tensor.	In	this	case,	the	medium	is	called	gyromagnetic.

11.1		DIELECTRIC	PERMITTIVITY	TENSOR	OF
MAGNETOACTIVE	PLASMA

Plasma	is	an	ionized	gas	consisting	of	a	mix	of	neutral	and	charged	particles.	Usually,	the
charged	 particles	 are	 positively	 charged	 ions	 and	 negatively	 charged	 free	 electrons.	 In
general,	 plasma	 is	 electrically	 neutral.	 Later,	 while	 considering	 the	 motion	 of	 plasma
particles	in	external	fields,	we	will	neglect	the	movement	of	positively	charged	ions,	since
their	mass	M	 is	much	larger	 than	the	electronic	mass	m.	The	proton	and	 the	neutron	are
approximately	1836	times	heavier	than	the	electron,	and	atoms	contain	several	protons	and
neutrons.

We	 will	 not	 consider	 the	 collision	 of	 charged	 particles	 with	 each	 other,	 that	 is,	 we
neglect	 the	 energy	 losses	 during	 these	 collisions.	 As	 a	 result,	 it	 is	 possible	 to	 neglect
conduction	currents	in	comparison	with	displacement	currents	in	Maxwell’s	equations.

First,	let	us	consider	a	nonmagnetized	plasma	(magnetic	field	is	not	applied).	Due	to	the
chaotic	thermal	motion	of	the	particles,	such	plasma	should	be	isotropic.	Assume	that	the
plasma	is	placed	in	an	electric	field	of	a	wave	propagating	through	the	plasma.	This	field
is	expressed	by	the	form

E(t)=E0 exp(iωt), (11.1)

where	ω	is	the	wave	angular	frequency.	Under	the	influence	of	this	electric	field,	the	free
electrons	of	the	plasma	oscillate	about	their	equilibrium	positions.	The	equation	of	motion
of	a	free	electron	can	be	written	as



md2rdt2=−eE, (11.2)

where

e	is	the	elementary	charge
r	is	the	electron	displacement	from	its	equilibrium	position

Taking	into	account	Equation	11.1,	Equation	11.2	is	easily	integrated,	and	one	gets

r(t)=r0 exp(iωt),   r0=eE0mω2. (11.3)

The	displacement	r	of	the	electron	from	its	equilibrium	position	results	in	the	appearance
of	an	electric	dipole	moment	p	=	–	er.	Note	 that	 in	 the	definition	of	dipole	by	Equation
1.13,	 the	 vector	 l	 is	 directed	 from	 the	 negative	 to	 the	 positive	 charge,	 but	 r	 is	 the
coordinate	of	the	negative	charge;	this	is	why	there	is	a	negative	sign	(-)	in	the	definition
of	p	 given	 earlier.	 If	 there	 are	N	 free	 electrons	 per	 unit	 volume,	 which	 have	 the	 same
displacement	 under	 the	 influence	 of	 the	 field,	 the	 total	 dipole	moment	 per	 unit	 volume
(polarization)	taking	into	account	Equation	11.3	is

P(t)=−Ner(t)=−Ne2E(t)mω2. (11.4)

Using	 the	 relation	 of	 the	 polarization	 vector	 and	 the	 electric	 field,	 P=ε0(κ−1)E,	 for	 the
dielectric	permittivity	of	the	plasma,	we	obtain	the	expression

k=1−Ne2ε0mω2=1−ωp2ω2, (11.5)

where	we	have	introduced	the	plasma	frequency	ωp=Ne2/ε0m.	This	frequency	plays	the
role	of	frequency	“cutoff”	below	which	an	electromagnetic	wave	cannot	propagate	in	an
isotropic	plasma.	When	ω	˂	ωp,	 the	dielectric	permittivity	is	negative,	and	the	refractive
index	 of	 the	 plasma	 is	 n˜=κ,	which	 is	 an	 imaginary	 value.	 From	Equation	 11.5,	 it	 also
follows	 that	 the	 dielectric	 permittivity	 of	 a	 nonmagnetized	 plasma	 is	 scalar	with	 strong
frequency	dispersion.

Now	we	consider	magnetized	plasma.	Plasma	is	magnetized	if	charged	particles	of	the
plasma	 change	 their	motion	with	 the	magnetic	 field	 applied	 to	 the	 plasma.	We	 suppose
that	along	with	the	field	of	Equation	11.1,	a	constant	external	magnetic	field	B0	(magnetic
field	intensity	H0	=	B0/μ0)	is	applied	along	the	z-axis.

Thus,	 in	 the	 plasma,	 there	 is	 a	well-defined	 direction	 given	 by	 the	 external	magnetic
field.	Under	the	influence	of	the	Lorentz	force,	Fm	=	–e(v	×	B0),	the	free	electrons	of	the
plasma	 move	 along	 helical	 paths,	 revolving	 around	 the	 external	 magnetic	 field	 with
angular	frequency

ωc=eB0m=eμ0H0m. (11.6)

The	quantity	ωε	is	known	as	the	cyclotron	frequency	and	it	does	not	depend	either	on	the
particle	velocity	or	on	the	radius	of	its	orbit.	In	the	presence	of	an	alternating	electric	field



E,	the	electron	trajectories	will	be	more	complicated,	and	their	forms	depend	on	the	angle
between	vectors	E	 and	B0.	 The	 polarization	 vector	 P	 of	 the	 plasma	will	 depend	 on	 the
direction	of	the	vector	B0,	so	 the	plasma	is	magnetized	and	exhibits	 the	properties	of	an
anisotropic	medium.

Let	 E(t),	 described	 by	 Equation	 11.1,	 be	 the	 alternating	 electric	 field	 of	 an
electromagnetic	 wave	 propagating	 in	 the	 plasma.	 We	 make	 the	 following	 simplifying
approximations:	plasma	ions	can	be	regarded	as	immobile	when	ω	≫	ωci,	where	ωci	is	the
ion	cyclotron	frequency.	If,	 in	addition,	ω	≫	ωcol,	where	ωcol	 is	a	 frequency	of	electron
collisions	with	ions	and	neutral	particles,	conduction	currents	can	be	neglected	compared
with	 displacement	 currents	 (actually,	 we	 neglect	 losses	 in	 the	 plasma).	 Under	 these
assumptions,	we	determine	the	dielectric	permittivity	of	a	magnetized	plasma.

Since	 the	 wave	 electric	 field	 E	 has	 a	 harmonic	 time	 dependence,	 the	 plasma
polarization	vector	will	also	possess	the	same	time	dependence,	that	is,	P(t)	=	P0	exp(iωt).
Therefore,	 according	 to	 Equation	 11.4,	 we	 have	 dP/dt	 =	 iωP	 =	 –Nev,	 where	 v(t)	 =	 v0
exp(iωt)	is	the	electron	velocity.	And	we	get

D=ε0E+P=ε0E+ieNvω. (11.7)

We	will	find	the	velocity	v	from	the	solution	of	the	equation	of	motion	for	an	electron:

mdvdt=−e(E+v×B0). (11.8)

Since	 the	 time	 dependence	 of	 the	 velocity	 v	 is	 harmonic,	 dv/dt	 =	 iωv.	 With	 this,	 the
projections	of	vector	Equation	11.8	on	the	Cartesian	coordinate	system	axes	are	given	by

vx=iemωEx+iωcωvy,vy=iemωEy−iωcωvx,vz=iemωEz, (11.9)

where	 we	 have	 introduced	 the	 cyclotron	 frequency	 defined	 by	 Equation	 11.6.	 Solving
Equation	 11.9	 with	 respect	 to	 the	 velocity	 components	 vx,	 vy,	 vz	 and	 substituting	 the
obtained	 expressions	 in	 Equation	 11.7,	 we	 arrive	 at	 the	 following	 expressions	 for	 the
projections	of	electric	displacement	vector	D:

Dx=ε0(1−ωp2ω2−ωc2)Ex+iε0ωp2ωcω(ω2−ωc2)Ey,Dy=
−iε0ωp2ωcω(ω2−ωc2)Ex+ε0(1−ωp2ω2−ωc2)Ey,Dz=ε0(1−ωp2ω2)Ez. (11.10)

In	this	equation,	we	used	the	expression	for	the	plasma	frequency	ωp=Ne2/ε0m	that	was
introduced	 in	 Equation	 11.5.	 From	 Equation	 11.10,	 it	 follows	 that	 the	 dielectric
permittivity	 of	 a	 magnetoactive	 plasma	 is	 an	 antisymmetric	 tensor	 with	 imaginary	 off-
diagonal	components:

κ^=(κiκa0−iκaκ000κz), (11.11)

where	we	have	introduced	the	expressions

κ=1−ωp2ω2−ωc2,   κa=ωp2ωcω(ω2−ωc2),   κz=1−ωp2ω2.



Thus,	 from	Equation	11.11,	 it	 follows	 that	 the	 components	 of	 the	 dielectric	 permittivity
tensor	 of	 a	 plasma	 placed	 in	 a	 magnetic	 field	 depend	 on	 cyclotron	 frequency.	 As	 the
frequency	ω	approaches	ωc	(i.e.,	ω	→	ωc),	both	κ	and	κa	tend	to	infinity.

This	 means	 that	 in	 the	 magnetoactive	 plasma,	 there	 is	 a	 resonance	 at	 the	 cyclotron
frequency	ωc,	and	at	this	resonant	frequency,	the	amount	of	energy	that	is	absorbed	by	the
plasma	will	reach	its	maximum.	When	ω	→	ωc,	κ	and	κa	tend	to	infinity.	The	presence	of
these	singularities	is	due	to	the	fact	that	dissipative	processes,	that	is,	plasma	conductivity,
were	not	 taken	 into	account	 in	 the	derivation	of	Equation	11.11.	 If	 energy	dissipation	 is
taken	into	account,	both	κ	and	κa	in	the	magnetoactive	plasma	remain	finite	at	the	resonant
frequency.

Exercise	11.1
Write	an	expression	for	the	refractive	index	ñ	of	an	isotropic	plasma	(in	the	absence	of	an
external	magnetic	field)	taking	into	account	the	motion	of	free	electrons	and	the	positively
charged	ions	(the	charge	of	ion	is	equal	to	e).	Assume	1D	motion	for	electrons	and	ions,
for	example,	along	x-axis.	Also	take	into	account	energy	losses	by	particles	(the	result	of
nonelastic	 collisions)	 by	 introducing	 dissipative	 force	 Fe=−δeve=−δe(dx/dt)	 and	 Fi=
−δivi=−δi(dX/dt)	into	the	equations	of	motion	for	the	electrons	and	the	ions,	respectively
(here	x	and	X	are	displacements	of	an	electron	and	an	ion).

Solution.	The	equation	of	motion	for	electrons	and	ions	under	the	influence	of	the	electric
field	of	a	monochromatic	wave	in	the	presence	of	dissipative	forces	can	be	written	as

md2xdt2+δedxdt=−eE0 exp(iωt),md2Xdt2+δidXdt=eE0 exp(iωt),

where	 m	 and	 M	 are	 the	 electron	 and	 ion	 masses,	 respectively.	 Let	 us	 introduce	 the
parameters	γe=δ/m, γi=δi/M	and	look	for	harmonic	solutions	of	these	equations:

x(t)=xm exp(iωt),   X(t)=Xm exp(iωt).

For	the	electron	and	ion	oscillation	amplitudes,	we	get

xm=eE0m.1ω2−iγeω,   Xm=−eE0M.1ω2−iγiω.

The	electric	dipole	moment	of	an	electron	and	an	 ion	can	be	found	by	multiplying	 their
displacements	with	their	charges,	that	is,

pe(t)=−ex(t),   pi=eX(t).

The	total	dipole	moments	of	electron	and	ion	are

p(t)=pe(t)+pi(t)=−ex(t)+eX(t)                                          =−(e2/mω2−iγeω+e2/Mω2−iγiω)E0 
exp(iωt).

The	dipole	moment	per	unit	volume,	P(t),	can	be	found	if	we	multiply	p(t)	by	the	number
of	electrons	and	ions	in	the	unit	volume	N	(let	us	assume	that	Ne	=	Ni	=	N):

P(t)=−(Ne2/mω2−iγeω+Ne2/Mω2−iγiω)E(t).

Now,	let	us	take	into	account	the	relation	between	the	polarization	vector	and	the	electric
field	vector:	P=ε0(κ-1)E.	As	a	 result,	we	get	 the	following	expressions	 for	 the	dielectric
permittivity	and	the	refractive	index	for	the	plasma:



κ=n2=1−(Ne2/ε0mω2−iγeω+Ne2/ε0Mω2−iγiω).

Let	us	introduce	the	plasma	frequency	for	electrons	and	ions,

ωpe=Ne2ε0m  and  ωpi=Ne2ε0M ,

and	take	into	account	that	for	plasma	the	value	of	n	is	close	to	unity.

Therefore,

n2=1−u,  u≪1,     n=1−u≈1−u2.

The	refractive	index	of	the	plasma	is

n˜=1−12(ωpe2ω2−iγeω+ωpi2ω2−iγiω).

The	refractive	index	is	complex	because	of	the	dissipation,	that	is,	n˜=n−iκ.	In	this	case,	it
is	necessary	to	separate	the	real	and	imaginary	parts	of	n:

n=1−12(ωpe2ω2+γe2+ωpi2ω2+γi2),   κ=12(ωpe2ωγeω2+γe2+ωpi2ωγiω2+γi2).

We	note	that	the	plasma	frequency	for	the	ions	is	much	smaller	than	the	plasma	frequency
for	the	electrons	(ωpi≪ωpe)	since	M	»	m.

11.2		ELECTROMAGNETIC	WAVES	IN
MAGNETOACTIVE	PLASMA

Let	us	now	consider	a	plane	monochromatic	wave	propagating	in	a	magnetoactive	plasma,
magnetized	in	the	direction	of	z-axis	by	the	external	field	H0.	Maxwell’s	equations	for	the
field	vectors	E	and	H	take	the	form

∇×E=−iωμ0κmH,∇×H=iωε0κ^E, (11.12)

where	 the	 dielectric	 permittivity	 tensor	 κ^	 is	 determined	 by	 Equation	 11.11	 and	 the
magnetic	 permeability	 of	 the	 plasma	 is	 practically	 equal	 to	 unity.	 Let	 us	 write	 the
projections	 of	 Equation	 11.12	 on	 the	 Cartesian	 coordinate	 axes.	 The	 first	 of	 these
equations	can	be	written	as

∂Ez∂y−∂Ey∂z=−iωμ0κmHx,∂Ex∂z−∂Ez∂x=−iωμ0κmHy,∂Ey∂x−∂Ex∂y=
−iωμ0κmHz, (11.13)

and	the	second	equation	as

∂Hz∂y−∂Hy∂z=iωε0(κEx+iκaEy),∂Hx∂z−∂Hz∂x=iωε0(κEx+iκaEy),∂Hy∂x
−∂Hx∂y=iωε0κzEz. (11.14)

In	what	follows	we	will	consider	the	following	two	simple	but,	at	the	same	time,	important
special	cases.

11.2.1		LONGITUDINAL	PROPAGATION
Here,	we	 consider	 the	 propagation	 of	 an	 electromagnetic	wave	 along	 the	 direction	 of	 a
constant	external	magnetic	 field,	H0,	 that	 is,	 along	 the	z-axis.	We	seek	a	 solution	of	 the



system	of	Equations	11.13	and	11.14	in	the	form

E(z)=Eexp(−ikz),   H(z)=Hexp(−ikz), (11.15)

where

E	and	H	are	constant	amplitudes
k	is	the	wave	vector	of	the	wave

We	 then	 substitute	 these	 solutions	 into	 the	 system	of	Equations	11.13	 and	11.14.	 In	 the
case	of	a	medium	unbounded	in	the	transverse	direction,	the	partial	derivatives	of	the	field
vectors	 of	 the	 plane	 wave	 on	 variables	 x	 and	 y	 are	 equal	 to	 zero.	 Then,	 from	 the	 last
equation	of	the	system	of	Equations	11.13	and	11.14,	we	find	that	Ez	=	0	and	Hz	=	0,	that
is,	in	this	particular	case,	the	wave	is	purely	transverse	relatively	to	both	the	electric	and
magnetic	fields	(TEM	wave).	The	remaining	four	equations	take	the	form

kEy=−ωμ0κmHx,kEx=ωμ0κmHy,kHy=ωε0(κEx+iκaEy),
−kHx=ωε0(−iκaEx+κEy), (11.16)

By	eliminating	 the	components	Hx,	Hy,	Equation	11.16	 is	 reduced	 to	 a	 system	of	 linear
homogeneous	equations	containing	the	variables	Ex,	Ey:

(k2−ε0μ0κmκω2)Ex−iε0μ0κmκaω2Ey=0,iε0μ0κmκaω2Ex+
(k2−ε0μ0κmκω2)Ey=0. (11.17)

By	equating	to	zero	the	determinant	of	this	system,	we	obtain	the	dispersion	equation	that
gives	the	dependence	of	the	frequency	on	the	wave	number:

(k2−ε0μ0κmκω2)2−(ε0μ0κmκaω2)2=0. (11.18)

This	equation	has	two	positive	roots	that	yield	two	possible	values	of	k:

k±=k0κmκ±, (11.19)

where

k0	=	ω/c	is	the	wave	number	in	vacuum
κ±=κ±κa	 is	 the	 effective	 dielectric	 constants	 of	 the	 plasma	 for	 the	 longitudinal
magnetization

Substituting	the	values	k±	in	Equation	11.17,	we	obtain	the	relationship	that	connects	the
electric	field	components:

Ey=∓iEx. (11.20)

This	equation	corresponds	to	waves	of	circular	polarization	with	two	opposite	directions
of	rotation.



Thus,	we	have	two	independent	waves	with	opposite	circular	polarizations,	which	can
propagate	 in	 a	magnetoactive	plasma	 along	 the	direction	of	 the	 external	magnetic	 field.
The	 first	wave,	 for	which	 the	wave	vector	 is	k+	 and	 the	electric	vector	 components	 are
connected	by	the	relationship	Ey=−iEx,	is	a	right	circularly	polarized	wave.	For	this	wave,
the	electric	field

E+(z)=A1(i−ij)exp(−ik+z) (11.21)

rotates	in	the	(x,	y)	plane	in	the	clockwise	direction	if	we	look	toward	the	direction	of	the
wave	 propagation.	 In	 a	 similar	 way,	 the	 wave	 with	 wave	 vector	 k−	 has	 left	 circular
polarization.	In	this	case,	the	electric	field	vector

E−(z)=A2(i+ij)exp(−ik−z) (11.22)

rotates	counterclockwise	 if	we	 look	 toward	 the	direction	of	 the	wave	propagation.	 If	we
use	the	opposite	“line	of	sight,”	that	is,	look	in	the	direction	opposite	to	the	wave	vector	of
the	propagating	wave,	the	direction	of	rotation	of	the	polarization	vectors	of	the	two	waves
will	 change	 rotation	 direction.	 In	 Equations	 11.21	 and	 11.22,	 we	 introduced	 the	 unit
vectors	i	and	j	that	are	directed	along	x-	and	y-axes,	respectively.

Two	waves	that	are	described	by	Equations	11.21	and	11.22	have	different	wave	vectors
and	phase	velocities	and	they	are	referred	to	as	normal	waves	(compare	with	Section	6.2
[Equation	 6.19]).	 The	 difference	 of	 those	 velocities	 explains	 the	 rotation	 of	 the
polarization	plane	of	a	wave	propagating	in	a	magnetoactive	plasma.	Let	us	assume	that
the	amplitudes	of	two	normal	waves	are	identical,	that	is,	A1	=	A2	=	A.	For	z	=	0,	their	total
field	 E(z)=E+(z)+E−(z)isE(0)=2Ai,	 that	 is,	 it	 corresponds	 to	 a	 wave	 linearly	 polarized
along	an	x-axis.	In	the	plane	z	=	l,	we	have

E(l)=A(i+ij)exp(−ik+l)+A(i−ij)exp(−ik−l)           =2Aexp(−ikl)(i cos(Δkl)+j 
sin(Δkl)), (11.23)

where	k=(k++k−)/2, Δk=(k+−k−)/2.	The	wave	that	is	determined	by	Equation	11.23	is	also
linearly	polarized,	but	E	forms	a	nonzero	angle	θF	with	the	x-axis	of

tanθF=EyEx=tan(Δkl),   θF=Δkl (11.24)

According	to	Equations	11.23	and	11.24,	the	plane	of	polarization	of	a	linearly	polarized
wave	 rotates	 as	 the	 wave	 propagates	 along	 the	 magnetic	 field	 in	 the	 magnetoactive
plasma.	The	rotation	angle	θρ	of	the	polarization	plane	increases	linearly	with	the	distance
that	 the	wave	travels	 in	the	plasma.	The	phenomenon	described	earlier	for	 the	plasma	is
part	of	more	general	phenomena	of	the	rotation	of	the	plane	of	polarization	known	as	the
Faraday	effect.

11.2.2		TRANSVERSE	PROPAGATION
Assume	 now	 that	 the	 wave	 propagates	 along	 the	 y-axis,	 which	 is	 perpendicular	 to	 the
external	magnetic	field,	H0.	In	this	case,	the	partial	derivatives	with	respect	to	x	and	z	in



Equations	11.13	and	11.14	are	equal	to	zero.	We	will	seek	a	solution	of	these	equations	in
the	form

E(y)=Eexp(−iky),   H(y)=Hexp(−iky). (11.25)

Substituting	 Equation	 11.25	 in	 the	 system	 of	 Equations	 11.13	 and	 11.14,	 we	 find	 that
Equations	 11.13	 and	 11.14	 split	 into	 two	 independent	 subsystems	 of	 equations
corresponding	to	two	normal	(characteristic)	waves.	The	first	subsystem

κEz=ωμ0κmHx,   κHx=ωε0κzEz (11.26)

gives	a	solution	in	the	form	of	a	linearly	polarized	plane	wave	with	the	electric	field	vector
E,	which	is	parallel	to	the	external	field	H0	and	the	magnetic	field	of	the	wave,	H,	which
is	orthogonal	 to	 the	external	field	H0.	This	wave	is	called	ordinary,	and	 its	wave	vector
corresponds	to	a	wave	propagating	in	an	isotropic	plasma:

k1=k0κmκz,   Z1=μ0κmε0κz,Ez(y)=Ez exp(−ik1y),   Hx(y)=Hx exp(−ik1y). (11.27)

The	second	subsystem,	corresponding	to	the	extraordinary	normal	wave,	has	the	form

κHz=−ωμ0κmHz,κHz=−ωε0(κEx+iκaEy),      0=iωε0(−iκaEx+κEy). (11.28)

From	 Equation	 11.28,	 it	 can	 be	 seen	 that	 the	 magnetic	 field	 of	 this	 wave	 is	 linearly
polarized	in	the	direction	of	the	external	field	H0.	The	electric	field	is	elliptically	polarized
in	the	(x,	y)	plane	orthogonal	to	the	external	field,	since	its	components	are	related	as

Ey=iκaκEx,

The	wave	number	and	impedance	of	the	extraordinary	wave	are

           k2=k0κmκ⊥,  Z2=μ0κmε0κ⊥,Ex,y(y)=Ex,yexp(−ik2y),   Hz(y)=Hz 
exp(−ik2y), (11.29)

where	 κ⊥=κ−κa2/κ	 is	 the	 effective	 dielectric	 permittivity	 of	 the	medium	 for	 transverse
magnetization.	The	difference	between	the	k	vectors	of	the	waves	described	by	Equations
11.27	and	11.29	means	the	existence	of	birefringence	(compare	with	Section	6.3),	that	is,	a
wave	 propagating	 perpendicular	 to	 the	 magnetic	 field	 in	 magnetized	 plasma	 is	 a
superposition	of	two	normal	waves	propagating	with	different	velocities.

Exercise	11.2
A	plasma	is	placed	in	a	uniform	magnetic	field	B0.	A	circularly	polarized	electromagnetic
wave	 with	 frequency	 ω	 is	 propagating	 along	 the	 magnetic	 field.	 Show	 that	 cyclotron
resonance	 absorption	 is	 possible	 only	 in	 the	 case	 of	 left	 circular	 polarization	 of	 the
electromagnetic	wave.

Solution.	The	cyclotron	frequency	for	electrons	in	plasma	is

ωc=eB0m.



The	cyclotron	resonance	is	defined	by	the	maximum	of	the	imaginary	part	of	the	dielectric
permittivity	 κ±=κ±κa.	 When	 dissipation	 is	 taken	 into	 account,	 the	 corresponding
components	of	the	dielectric	permittivity	tensor	defined	by	Equation	11.11	for	the	plasma
in	magnetic	field	take	the	form

κ=−ωp2ω2−ωc2−iγω,   κa=ωp2ωcω(ω2−ωc2−iγω).

Let	us	find	an	expression	for	the	κ+	and	κ−	components	of	electrical	permittivity	tensor:

κ±=κ±κa=1−(1∓ωcω)ωp2ω2−ωc2−iγω.
Let	us	separate	the	real	and	imaginary	parts	of	this	expression:

Re(κ±)=1−(1∓ωcω)ωp2(ω2−ωc2)(ω2−ωc2)2+γ2ω2,Im(κ±)=
(1∓ωcω)ωp2γω(ω2−ωc2)2+γ2ω2.

For	a	frequency,	which	coincides	with	frequency	ωc,	we	get	Re(κ±)=1,	and

Im(κ±)=(1∓ωcω)ωp2γω.
From	this	expression,	it	follows	that	in	the	case	of	right	circular	polarization	of	the	wave
in	a	plasma,	the	magnitude	Im(κ+)=(ω−ωc)ωp2/γω2  at  ω=ωc	becomes	equal	to	zero,	that
is,	in	this	case,	there	is	no	resonance.	Cyclotron	resonance	takes	place	only	in	the	case	of
left	circular	polarization	of	 the	electromagnetic	wave	propagating	 in	 the	plasma.	As	one
can	see	for	γ→0 Im(κ−)=2ωp2/γωc→∞.

11.3		MAGNETIC	PERMEABILITY	OF	FERRITES	AND
MAGNETIC	RESONANCE	IN	FERRITES

Ferrites	are	magnetic	semiconductors	or	dielectrics	possessing	rather	small	level	of	losses
in	the	microwave	frequency	and	range.	These	are	crystalline	materials,	which	are	usually
made	in	the	form	of	ceramics.	From	the	chemistry	standpoint,	the	ferrites	are	compounds
of	 iron	 oxide	 Fe2O3	 with	 oxides	 of	 other	 divalent	 metals.	 The	 magnetic	 properties	 of
ferrites	are	due	to	the	existence	in	their	crystal	lattice	of	atoms	or	ions	possessing	electrons
with	uncompensated	spin.	A	ferrite,	magnetized	by	an	external	magnetic	field,	possesses	a
special	type	of	anisotropy—a	magnetic	gyrotropy.

Consider	 a	 homogeneous	 unbounded	 ferrite,	 magnetized	 to	 saturation	 by	 a	 constant
external	magnetic	field	H0.	We	will	assume	that	the	field	H0	is	applied	along	the	z-axis	of
a	Cartesian	coordinate	system.	We	also	assume	that	in	the	absence	of	a	magnetizing	field
the	 ferrite	 is	 isotropic,	 that	 is,	 we	 neglect	 all	 types	 of	 the	 anisotropy	 in	 it,	 except	 that
induced	by	the	field	H0.

A	 magnetized	 ferrite	 is	 characterized	 by	 its	 magnetization	 vector	 M,	 that	 is,	 the
magnetic	moment	per	unit	volume	of	the	ferrite.	Consider	the	time	evolution	of	vector	M
in	an	external	magnetic	field	H	=	H0	+	h(t),	which	consists	of	a	dc	field	H0	and	alternating
one	h(t).	For	a	lossless	medium,	the	motion	of	the	vector	M	is	described	by	the	Landau–
Lifshitz	equation:

dMdt=−γμ0M×H, (11.30)



where	γ	is	the	gyromagnetic	ratio,	for	a	free	electron	γ	=	e/m	=	1.76	×	1011	C/kg.

Let	 us	 study	 in	 more	 detail	 the	 magnetization	 vector	 motion	 in	 the	 presence	 of	 a
constant	external	field	H	=	H0	=	H0k,	magnetizing	the	ferrite	to	saturation	along	the	z-axis
(here,	k	is	the	unit	vector	directed	along	z-axis).	If	we	project	the	magnetization	vector	on
three	Cartesian	axes,	Equation	11.30	becomes

dMxdt=−γμ0H0My,   dMydt=−γμ0H0Mx,   dMzdt=0. (11.31)

We	express	the	component	My	from	the	first	equation	of	(11.31)	and	substitute	it	into	the
second	equation.	As	a	result,	we	obtain

d2Mxdt2+ωH2Mx=0, (11.32)

where	we	have	 introduced	 the	angular	 frequency	ωH=γμ0H0.	We	obtained	a	differential
equation	 that	 describes	 harmonic	 oscillations	 with	 an	 angular	 frequency	 ωΗ	 for	 the
magnetization	component	Mx.	A	similar	equation	can	be	obtained	for	the	component	My.

Taking	into	account	Equation	11.31,	one	gets	the	solutions

Mx=A sin(ωHt+α),   My=−A cos(ωHt+α), (11.33)

where	A	and	α	are	arbitrary	constants.	From	the	third	equation	of	the	system	of	Equation
11.31,	it	follows	Mz	=	const.	This	constant	 is	equal	 to	 the	saturation	magnetization	M0,
which	is	determined	experimentally	and	is	one	of	the	main	characteristics	of	the	ferrite.

From	 Equation	 11.33,	 it	 follows	 that	 the	 tip	 of	 the	 vector	M	 rotates	 at	 an	 angular
velocity	ωH	in	the	plane	perpendicular	to	the	vector	H0.	If	we	look	toward	the	tip	of	vector
H0,	 the	 rotation	 M	 is	 in	 the	 counterclockwise	 direction	 (Figure	 11.1).	 This	 type	 of
magnetization	vector	motion	is	called	precession.

Equation	11.30	does	not	take	into	account	losses	in	energy.	In	a	real	ferrite,	the	energy
of	 magnetic	 oscillations	 dissipates,	 turning	 into	 heat.	 In	 this	 case,	 the	 trajectory	 of	 the
vector	M	end	(tip)	 is	not	a	circle	but	a	spiral	with	a	gradually	decreasing	radius.	During
the	 relaxation	 time	 (of	 the	 order	 of	 10−8	 s),	 the	 precession	 of	 the	 magnetic	 moment
decays,	and	 the	magnetic	moments	of	 the	atoms	are	set	along	 the	 field.	To	maintain	 the
precession,	it	is	necessary	to	apply	an	external	alternating	field	H0.

Let	us	suppose	that	in	addition	to	the	constant	magnetic	field	H0	=	H0z0,	an	alternating
magnetic	field	oriented	perpendicular	H0	is	applied,	which	has	the	form

H=H0+h exp(iωt). (11.34)

The	magnetization	vector	M	will	undergo	forced	oscillations	at	the	same	frequency	ω,	that
is,	it	also	will	have	an	alternating	component:

M(t)=M0+mexp(iωt). (11.35)



FIGURE	11.1	Precession	of	 the	magnetization	vector	 in	 the	magnetic	 field	 for	 the	case
without	energy	dissipation	(a)	and	with	the	dissipation	(b).

Substituting	Equations	11.34	and	11.35	into	Equation	11.30,	we	get

iωm=−γμ0m×H0−γμ0M0×h−γμ0(m×h)exp(iωt). (11.36)

Here,	we	took	into	account	the	fact	that	vector	M0	is	parallel	to	vector	H0,	and	that	is	why
M0	 ×	H0	 =	 0.	 The	 applied	 alternating	 field	 is	 assumed	 small	 compared	 to	 the	 time-
independent	field	H0	so	that	the	inequalities	|	h	|≪H0, |	m	|≪M0	are	satisfied.	Then	in	the
right-hand	 side	 of	 Equation	 11.36,	 the	 third	 term	 can	 be	 neglected	 because	 it	 is	 much
smaller	than	other	terms.

We	project	Equation	11.36	on	 the	axes	of	 the	coordinate	 system.	Taking	 into	account
that	H0(0,0,H0), h(hx,hy,0), M0(0,0,M0), m(mx,my,mz),	we	get

iωmx=−ωHmy+ωMhy,iωmy=ωHmx-ωMhx,iωmz=0, (11.37)

where	ωM=γμ0M0.	From	here,	we	find	 the	projections	of	high-frequency	magnetization
vector:

mx=ωHωMωH2−ω2hx+iωωMωH2−ω2hy,my=
−iωωMωH2−ω2hx+ωHωMωH2−ω2hy,mz=0. (11.38)

The	 relationship	 between	 high-frequency	 components	 of	 the	 magnetization	 and	 the
alternating	magnetic	field	can	be	expressed	in	tensor	form	as	follows:

m=χ^mh, (11.39)

where	 the	 coefficients	 hx,	 hy	 in	 the	 right-hand	 side	 of	 Equation	 11.38	 form	 a	 high-
frequency	magnetic	susceptibility	tensor	of	the	ferrite:

χ^m=(χmiχma0−iχmaχm0000),   χm=ωHωMωH2−ω2,   χma=ωωMωH2−ω2 (11.40)

Knowing	 tensor	 χ^m,	we	 find	 the	high-frequency	magnetic	 permeability	 tensor	 of	 the
ferrite:



κ^m=1+χ^m=(κmiκma0−iκmaκm000κmz),κm=1+χm=1+ωHωMωH2−ω2,   
κmz=1,   κma=χma=ωωMωH2−ω2.

(11.41)

Tensor	 components	 κm	 and	 κma	 have	 a	 resonant	 frequency	 dependence	 (the	 role	 of	 the
resonant	 frequency	 is	played	by	ωH):	κm,κma→∞ if ω→ωH.	The	dependence	of	κm	and
κma	 on	 the	 dc	 external	 field	H0	 at	 a	 fixed	 frequency	ω	 has	 the	 same	 character,	 and	 the
resonance	is	achieved	at	the	field	value	Hres=ω/γμ0.

If	we	solve	the	Landau–Lifshitz	equation	taking	into	account	losses,	the	dependences	of
κm	and	κma	on	ω	will	be	in	the	form	of	smooth	curves	without	singularities.	In	addition,	κm
and	κma	will	be	complex	numbers:	κm=κ′m−iκ″m, κma=κ′ma−iκ″m.	Field	and	frequency
dependences	of	 the	 imaginary	parts	κ″m,κ″ma	have	maxima	 in	 the	 region	of	 resonance.
Thus,	resonant	absorption	of	energy	of	the	high-frequency	field	by	the	ferrite	is	observed.
This	 phenomenon	 is	 called	 ferromagnetic	 resonance.	 The	 frequency	 and	 field
dependences	 of	 the	 real	 and	 imaginary	 parts	 of	 κm	 and	 κma	 are	 shown	 in	 Figure	 11.2
(dashed	line	shows	the	path	dependency	in	the	absence	of	losses).

Exercise	11.3
The	 solution	 of	 the	 Landau–Lifshitz	 equation	 (this	 equation	 takes	 into	 account	 losses)
gives	the	following	dependence	for	the	diagonal	component	of	the	magnetic	permeability
tensor	on	frequency:

κm=1+ωHωMωH2−ω2+2iωrω,

where	ωκ	 is	 the	 relaxation	 frequency.	 A	 ferrite	 sample	 has	 the	 following	 parameters:
ωH=2×1010s−1, ωM=3×1011s−1, ωr=6×108s−1.	Find	 the	differences	 in	 the	estimates	of
the	real	part	of	κm	between	 the	calculation	 that	 takes	 into	account	energy	 losses	and	 the
calculation	 that	 neglects	 losses.	 Calculate	 those	 differences	 for	 two	 frequencies:
ω1=0.5ωH and ω2=0.9ωH.



FIGURE	11.2	 Frequency	 (a)	 and	 field	 (b)	 dependencies	 of	 real	 and	 imaginary	 parts	 of
magnetic	permeability	in	the	vicinity	of	magnetic	resonance	(the	dashed	lines	correspond
to	the	case	without	energy	dissipation).

Solution.	Let	us	write	separately	the	real	and	imaginary	parts	of	κm=κ′m−iκ″m:

κm=1+ωHωM(ωH2−ω2−2iωrω)(ωH2−ω2)2+4ωr2ω2      =1+ωHωM(ωH2−ω2)
(ωH2−ω2)2+4ωr2ω2−i2ωHωMωrω(ωH2−ω2)2+4ωr2ω2.

Thus,	for	κ′m(ω),	we	get	the	following	expression:

κ′m(ω)=1+ωHωM(ωH2−ω2)(ωH2−ω2)2+4ωr2ω2.

By	 substituting	 into	 this	 expression	 the	 given	 data	 and	 frequencies	 ω1=0.5ωH and 
ω2=0.9ωH,	 we	 get	 κ′m(ω1)=20.97 and κ′m(ω2)≈74.	 Substitution	 of	 the	 frequencies
mentioned	earlier	into	the	expression	for	magnetic	permeability,	which	does	not	take	into
account	losses,

κm(ω)=1+ωHωMωH2−ω2

gives	the	following	values	of	κm:κm(ω1)=21,   κm(ω2)=79.95.	Thus,

Δκm(ω1)=κm(ω1)−κ′m(ω1)=0.03,Δκm(ω2)=κm(ω2)−κ′m(ω2)=5.95.

11.4		WAVES	IN	A	TRANSVERSELY	MAGNETIZED
FERRITE

Consider	 a	 plane	 monochromatic	 wave	 propagating	 in	 a	 ferrite	 perpendicular	 to	 the
direction	of	an	external	magnetic	field	(e.g.,	E(y)	=	E	exp(−iky),	H(y)	=	H	exp(−iky),	wave
propagating	in	the	direction	of	the	y-axis).	The	ferrite	is	characterized	by	a	scalar	dielectric
permittivity	 κ	 and	 a	magnetic	 permeability	 tensor	 κ^m	 is	 given	 by	Equation	 11.41.	We
write	Maxwell’s	equations	for	the	complex	amplitudes	of	the	wave	field	vectors	E	and	H
as

∇×E=−iωμ0κ^mH,∇×H=iωε0κE (11.42)

and	project	them	on	the	axes	of	the	chosen	Cartesian	coordinate	system.	In	the	left-hand
side	 of	 the	 resulting	 expressions,	 we	 take	 into	 account	 that	 for	 the	 plane	 wave	 under
consideration,	 the	 partial	 derivatives	 with	 respect	 to	 x	 and	 z	 are	 equal	 to	 zero.	 In	 the
projections	of	the	first	equation	of	Equations	11.42,	it	is	necessary	to	consider	the	tensor
nature	of	magnetic	permeability.	The	result	 is	a	system	of	six	scalar	equations,	which	 is
divided	 into	 two	 independent	 subsystems.	 The	 first	 subsystem	 contains	 the	 field
components	Ez,	Hx,	Hy:

∂Ez∂y=−iωμ0(κmHx+iκmaHy),      0=−iωμ0(-iκmaHx+κmHy),           
−∂Hx∂y=iωκε0Ez. (11.43)

The	second	subsystem	includes	other	components	Ex,	Ey,	Hz:

∂Hz∂y=iωκε0Ex,       0=iωκε0Ey,∂Ex∂y=iωμ0κmzHz. (11.44)



The	 two	 subsystems	of	 the	equations	 correspond	 to	 two	 independent	 (normal)	waves	of
transversely	magnetized	ferrite.

The	 solution	of	 subsystem	of	Equations	11.44	 is	 the	 first	 normal	wave.	This	wave	 is
analogous	to	the	wave	in	an	isotropic	dielectric.	Its	fields	are	linearly	polarized	and	have
only	 transverse	 components	 Ex	 and	 Hz,	 but	 Ey	 =	 0.	 The	 wave	 characteristics	 of	 the
ordinary	wave,	k1	and	Z1,	do	not	possess	frequency	and	field	dispersion:

         k1=k0κκmz,     Z1=μ0κmzε0κ,Ex(y)=Ex exp(−ik1y),   Hz(y)=Hz exp(−ik1y). (11.45)

The	 solution	 of	 Equation	 11.43	 is	 the	 so-called	 extraordinary	 wave.	 It	 has	 only	 one
(transverse)	component	of	the	electric	field,	Ez,	which	is	parallel	to	the	magnetizing	field,
and	 two	 components	 of	 a	 magnetic	 field:	 transverse	 component,	 Hx,	 and	 longitudinal
component,	Hy.	The	magnetic	field	components	are	related	by	the	equation

Hy=iκmaκmHx, (11.46)

which	follows	from	the	second	equation	of	subsystem	(11.43).	Thus,	this	normal	wave	is
transverse	and	linearly	polarized	only	concerning	the	electric	field.	The	magnetic	field	of
this	 wave	 is	 elliptically	 polarized	 in	 the	 (x,	 y)	 plane.	 The	 factor	 i	 in	 Equation	 11.46
indicates	that	the	phase	shift	of	oscillations	of	components	Hx	and	Hy	is	π/2,	and	the	ratio
of	amplitudes	of	 the	magnetic	field	components	Hy/Hx	 is	equal	 to	κma/Km.	Note	 that	 the
longitudinal	 component	 of	 the	 magnetic	 field	 in	 the	 wave	 is	 directly	 related	 to	 the
gyrotropy	of	the	ferrite:	if	κma	=	0,	then,	according	to	Equation	11.43,	Hy	=	0.

If	we	eliminate	from	the	subsystem	of	Equation	11.43	the	component	Hy,	we	arrive	at
the	following	two	equations:

∂Ez∂y=−iωμ0κm⊥Hx,   ∂Hx∂y=−iωε0κEz, (11.47)

where	 the	 ferrite	 effective	 magnetic	 permeability,	 κm⊥=κm−κ2ma/κm,	 has	 been
introduced.	By	analogy	with	the	solution	of	Equation	11.26,	the	solution	of	Equation	11.47
can	 be	 written	 as	 a	 monochromatic	 plane	 wave,	 for	 which	 the	 wave	 number	 k2	 and
impedance	Z2	are

         k2=k0κκm⊥,   Z2=μ0κm⊥ε0κ,Ez(y)=Ez exp(−ik2y),   
Hx,y(y)=Hx,yexp(−ik2y). (11.48)

As	in	the	case	of	the	components	of	high-frequency	magnetic	permeability	tensor,	κm	and
κma,	the	effective	magnetic	permeability	also	has	a	strong	dispersion:	it	is	characterized	by
a	resonance	dependence	on	angular	frequency	ω	and	the	external	field	H0.

Consider	a	 linearly	polarized	wave	 incident	normally	on	a	 flat	 layer	of	a	 transversely
magnetized	ferrite	(Figure	11.3).	If	the	electric	field	of	the	incident	wave	is	polarized	at	an
angle	φ0	to	the	field	H0,	(φ0	≠	0,	π/2),	 two	normal	waves	are	excited	in	the	ferrite	layer.



The	electric	field	component,	parallel	to	the	field	H0,	excites	“extraordinary”	wave,	while
the	 component	 orthogonal	 to	 the	 field	H0	 excites	 “ordinary”	 wave	 in	 the	 magnetized
ferrite.	These	waves	propagate	 in	 the	 ferrite	with	different	 phase	velocities,	 vph1=ω/k1 
and vph2=ω/k2.	 Therefore,	 at	 the	 output	 from	 the	 ferrite	 layer	with	 a	 thickness	 l,	 these
waves	acquire	a	phase	shift:

ψ(l)=(k2−k1)l=(κκm⊥−κκmz)k0l, (11.49)

which	results	in	the	transmitted	wave	being	elliptically	polarized	(compare	with	Equation
11.24).	 The	 parameters	 of	 the	 polarization	 ellipse	 depend	 on	 the	 layer	 thickness,	 the
external	field,	and	the	frequency	ω.	The	effect	of	transforming	the	wave	polarization	by	a
layer	 of	 transversely	magnetized	 ferrite	 is	 called	 the	Cotton–Mouton	effect.	 This	 effect
and	 also	 the	 resonance	 properties	 of	 “extraordinary”	wave	 in	 a	 transversely	magnetized
ferrite	 are	 widely	 used	 in	 microwave	 technology	 to	 create	 devices	 controlled	 by	 an
external	magnetic	field	(e.g.,	valves,	polarizers,	and	modulators).

Exercise	11.4
A	linearly	polarized	electromagnetic	wave	is	incident	normally	on	a	ferrite	plate.	The	plate
with	thickness	l	is	placed	in	an	external	magnetic	field	H0,	which	lies	in	the	plane	of	the
plate	 and	magnetizes	 it	 uniformly.	 The	 polarization	 plane	 of	 the	 incident	wave	 is	 at	 an
angle	φ0	=	30°	with	respect	to	the	direction	of	the	external	field.	Find	the	parameters	of	the
polarization	ellipse	of	the	wave	at	the	plate’s	surface	through	which	the	wave	travels.

Solution.	Let	us	assume	that	the	electromagnetic	wave	is	propagating	along	the	y-axis	and
that	 the	magnetic	field	 is	directed	along	the	z-axis	 (see	Figure	11.3).	Two	normal	waves
are	generated	inside	the	ferrite	plate.	Since	the	plane	of	polarization	of	the	incident	wave
is	at	an	angle	of	30°	with	respect	to	the	external	field,	then	the	electric	field	vector	inside
of	the	plate	has	two	vector	components:

FIGURE	11.3	Illustration	of	wave	propagation	through	the	ferrite	slab.

Ex=Em sin(π6)sin(ωt−k1y)=(Em2)sin(ωt−k1y),Ez=Em cos(π6)sin(ωt−k2y)=(3Em2)sin(ωt
−k2y).

The	 component	Ex(t,	 y)	 of	 the	wave	 field,	 which	 is	 orthogonal	 to	 the	 field	H0,	 excites
ordinary	wave	and	the	component,	which	is	parallel	to	field,	Ez(t,	y),	excites	extraordinary
wave.	These	waves	have	two	different	phase	velocities:



vph1=ωk1=ωk0κκmz    and   vph2=ωk2=ωk0κκm⊥.

An	elliptically	polarized	wave	 is	 formed	after	 the	ordinary	 and	extraordinary	waves	 are
added.	If	there	is	no	absorption	in	the	layer,	then	after	transmission	through	the	plate,	the
vector	components	of	the	wave	field	have	the	form

Ex=(Em2)sin(ωt−k1l),Ez=(3Em2)sin(ωt−k2l).

As	it	is	seen,	these	two	waves	have	a	phase	difference	equal	to

ψ(l)=(k2−k1)l=(κκm⊥−κκmz)k0l.

Adding	the	two	orthogonally	polarized	waves	results	in	an	elliptically	polarized	wave.	The
parameters	of	the	polarization	ellipse	depend	on	the	plate	thickness	l,	the	external	field	H0,
and	the	frequency	ω.	In	order	to	find	these	parameters,	let	us	rewrite	the	equations	given
earlier	for	Ex	and	Ez	in	the	form

    2ExEm=sinωt cosk1l−cosωt sink1l,2Ez3Em=sinωt cosk2l−cosωt sink2l.

Let	us	multiply	the	first	equation	by	cos	k2l	and	the	second	equation	by	cos	kll,	and	after
this,	subtract	one	from	another.	In	a	similar	fashion,	 let	us	multiply	the	first	equation	by
sin	k2l	and	the	second	equation	by	sin	k1l,	and	after	this,	subtract	one	from	another.	As	a
result,	we	obtain	a	system	of	two	equations:

cosk2l.(2ExEm)−cosk1l.(2Ez3Em)=cosωt⋅sin(k2l−k1l),sink2l.(2ExEm)−sink1l.
(2Ez3Em)=sinωt⋅sin(k2l−k1l).

Let	us	square	each	of	these	equations	and	add	them	to	each	other.	As	a	result,	we	get	the
equation	for	ellipse	with	minor	and	major	semiaxes	a=Em/2 and b=3Em/2:

(Exa)2+(Ezb)2−2(Exa)(Ezb)cosψ(l)=sin2 ψ(l).

It	can	be	shown	 that	 the	major	axis	of	 this	ellipse	 is	 turned	with	 respect	 to	z-axis	by	an
angle	φ(l),	which	is	given	by	the	relationship

tan[	2φ(l)	]=2abb2−a2cosψ(l)=3cosψ(l),              φ(l)=12arctan[	3cosψ(l)	].

11.5		WAVES	IN	A	LONGITUDINALLY	MAGNETIZED
FERRITE

Let	us	now	consider	the	propagation	of	a	plane	monochromatic	wave	in	z-direction	as	it	is
defined	by	Equation	11.15	(E(z)	=	E	exp(-ikz),	H(z)	=	H	exp(-ikz))	in	a	ferrite	magnetized
to	saturation	in	the	direction	of	a	magnetic	field	H0	=	H0z0.	We	write	down	the	projections
of	Equation	11.42	on	the	x-	and	y-axes.	Taking	into	account	that	the	magnetic	permittivity
of	the	ferrite	is	a	tensor	of	the	form	in	Equation	11.41	and	also	that	for	a	plane	wave	the
derivatives	of	the	field	vectors	with	respect	to	coordinates	x	and	y	are	equal	to	zero,	we	get

∂Ey∂z=iωμ0(κmHx+iκmaHy),∂Ex∂z=iωμ0(iκmaHx−κmHy),∂Hy∂z=
−iωε0κEx,∂Hx∂z=iωε0εEy. (11.50)

The	projections	on	the	z-axis	are	Ez	=	0,	Hz	=	0,	that	is,	the	wave	is	transverse	with	respect
to	both	the	electric	and	the	magnetic	fields.



We	now	 introduce	 the	 new	vectors	E±	 and	H±,	which	 are	 related	 to	E	 and	H	 by	 the
equations

E±=Ex±iEy,     H±=Hx±iHy. (11.51)

For	this	purpose,	we	sum	the	second	and	fourth	equations	from	the	system	of	Equations
11.50	with	 the	first	and	the	 third,	multiplied	by	 i	or	–i.	As	a	 result,	we	end	up	with	 two
subsystems:	the	first	one,	for	components	E+	and	H+,

∂E+∂z=−ωμ0(κm+κma)H+,∂H+∂z=ωε0κE+, (11.52)

and	the	second	subsystem,	for	components	E−	and	H−,

∂E−∂z=ωμ0(κm-κma)H−,∂H−∂z=−ωε0κE−. (11.53)

The	solutions	of	these	subsystems	correspond	to	the	two	normal	waves	of	a	longitudinally
magnetized	ferrite:

H±(z)=A1exp(−ik±z),E±(z)=Z±A1exp(−ik±z), (11.54)

where	k±=k0κ(κm±κma),Z±=μ0κm±/ε0κ.	These	waves	are	transverse;	they	are	circularly
polarized	with	opposite	directions	of	rotation.	If	we	look	in	the	direction	opposite	to	the
wave	 propagation,	 the	 end	 of	 field	 vector	 E+	 or	H+	 rotating	 in	 the	 counterclockwise
direction.	This	is	right	circular	polarized	wave.	The	wave	with	fields	E−	and	H−	exhibits	a
left	circular	polarization	instead,	that	is,	it	is	opposite	to	E+	and	H+	(Figure	11.4).

To	 confirm	 what	 has	 been	 described	 earlier,	 let	 us	 remember	 that	 for	 a	 circularly
polarized	wave	 the	mutually	 orthogonal	 components	 of	 the	 field	 vectors	 have	 the	 same
amplitudes	and	a	phase	shift	±π/2.	Therefore,	they	must	be	related	as	Hy=∓iHx and Ey=
∓iEx,	where	the	upper	sign	corresponds	to	the	right	and	the	bottom	one	to	the	left	circular
polarization.	For	the	magnetic	field	of	a	wave	with	right	circular	polarization	(phase	shift
is	equal	to	–π/2),	one	gets

H+=Hx+iHy=2iHy=2Hx≠0,H−=Hx−iHy=0. (11.55)

For	a	wave	with	left	circular	polarization	(phase	shift	is	equal	to	+π/2),

H+=Hx+iHy=0H−=Hx−iHy=−2iHy=2Hx≠0. (11.56)

Normal	waves	of	a	longitudinally	magnetized	ferrite,	κm+=κm+κma	and	κm−=κm−κma,
have	 different	 wave	 characteristics—k+,	Z+	 and	 k−,	Z−—due	 to	 the	 difference	 of	 their
effective	 magnetic	 permeability.	 The	 dependence	 of	 κm+	 on	 angular	 frequency	 ω	 and
external	 field	 H0	 has	 a	 resonant	 character:	 in	 the	 absence	 of	 losses,	 κm+→±∞	 when
ω→ωH or H0→Hres=ω/γμ0.	 Thus,	 for	 a	 wave	 with	 right	 circular	 polarization,	 the
ferromagnetic	 resonance	 can	 be	 observed.	 On	 the	 contrary,	 the	 dependence	 of	 κm-	 is



monotonic,	 that	 is,	 ferromagnetic	 resonance	 for	 a	wave	with	 left	 circular	 polarization	 is
absent	(Figure	11.5).	The	curves	are	plotted	with	 losses	 taken	 into	account	 that	 removes
+∞	 and	 –∞	 for	 κm+,	 and	 in	 addition,	 κm+	 and	 κm-	 become	 complex	 numbers	 and	 their
imaginary	parts	are	determined	by	losses	(compare	with	Figure	11.2).

FIGURE	11.4	Directions	of	rotation	of	the	magnetic	field	vectors	for	(a)	left	and	(b)	right
circular	polarizations.

FIGURE	11.5	 Frequency	 (a)	 and	 field	 (b)	 dependencies	 of	 real	 and	 imaginary	 parts	 of
magnetic	permeability	in	the	vicinity	of	magnetic	resonance.

Consider	a	linearly	polarized	wave,	whose	magnetic	field	is	oriented	along	the	x-axis,
incident	 normally	 from	 a	 vacuum	 on	 a	 longitudinally	 magnetized	 ferrite.	 A	 linearly
polarized	wave,	which	travels	in	the	medium	along	the	z-direction,	can	be	represented	as	a
superposition	 of	 two	 circularly	 polarized	waves	with	 the	 same	 amplitudes	 and	 opposite
directions	of	rotation:

H++H−=2Hx=A(e−ik+z+e−ik−z),H+−H−=2iHy=A(e−ik+z−e−ik−z). (11.57)

Introducing	 the	 notations	 k=(k++k−)/2 and Δk=(k+−k−)/2,	we	will	write	 down	Equation
11.57	in	the	form

Hx=0.5⋅Ae−ikz(e−iΔkz+eiΔkz)=Ae−ikzcos(Δkz),Hy=0.5⋅iAe−ikz(e−iΔkz
−eiΔkz)=Ae−ikzsin(Δkz). (11.58)

The	angle	θF	between	the	polarization	plane	of	 the	wave	and	the	x-axis	after	 traveling	a
distance	z	is	given	by	the	relations

θF(z)=arctan(HyHx)=arctan(tan(Δkz))=Δkz, (11.59)

Δk=k0(κκm+−κκm−). (11.60)

From	Equation	11.59,	it	is	seen	that	the	plane	of	polarization	of	the	wave	is	rotated	(Figure



11.6).	If	the	direction	of	the	propagation	is	along	the	external	magnetic	field,	the	rotation
is	clockwise	(Figure	11.6).	If	the	wave	propagates	along	the	direction	opposite	to	H0,	the
rotation	of	the	polarization	plane	is	reversed.

Thus,	if	the	wave	passes	through	the	ferrite	first	along	the	direction	of	H0	and	then	in
the	opposite	 direction	by	 the	 same	distance,	 its	 polarization	plane	does	not	 return	 to	 its
initial	position	but	is	instead	rotated	by	an	angle	2Δkz	(Figure	11.6).

FIGURE	 11.6	 Rotation	 of	 the	 polarization	 plane	 for	 the	 wave	 propagating	 along	 the
magnetic	field	in	homogeneously	magnetized	ferrite.

Note	that	in	a	real	ferrite,	because	of	losses,	both	the	magnetic	and	electric	fields	of	the
transmitted	 wave	 acquire	 some	 ellipticity.	 This	 is	 due	 to	 the	 fact	 that	 the	 various
components	 of	 the	 field	 vectors	 experience	 unequal	 absorption,	 and,	 therefore,	 their
amplitudes	are	different.

Exercise	11.5
A	 linearly	 polarized	 electromagnetic	 wave	 is	 propagating	 in	 a	 uniformly	 magnetized
ferrite	sample	in	the	form	of	a	slab	along	the	direction	of	an	external	magnetic	field.	Find
the	smallest	path	length	that	the	wave	has	to	travel	so	that	after	transmission	through	the
sample	 its	 polarization	 plane	 is	 rotated	 by	 an	 angle	 of	 π/4.	 The	 external	 field	 is
perpendicular	 to	both	faces	of	 the	sample.	Ferrite	parameters	are	κ	=	9.80,	ωΜ	=	3.00	×
1010	s−1,	ωH	=	4.00	×	1011	s−1,	and	wave	frequency	ω	=	1010	s−1.

Solution.	 For	 the	 propagating	 electromagnetic	 wave	 in	 a	 magnetized	 ferrite	 along	 the
external	field,	the	specific	Faraday	rotation	can	be	found	from	the	expression

Δk=k0(κκm+−κκm−)=ωκc(κm+−κm−).

The	total	rotation	angle	for	a	sample	with	thickness	l	is	θF	=	Δkl.	Therefore,	to	rotate	the
wave’s	 polarization	 plane	 by	 an	 angle	 of	 π/4,	 it	 is	 necessary	 that	 the	 thickness	 of	 the
sample	be

l=π4Δk=πc4ωκ.1κm+−κm−=πc4ωκ.1κm+κma−κm-κma                 =πc4ωκκm.11+κma/κm
−1-κma/κm,

where	the	components	of	magnetic	permeability	tensor	of	ferrite	have	the	form

κm=1+ωHωMωH2−ω2,     κma=ωωMωH2−ω2.

Let	us	take	into	account	that	for	the	given	angular	frequency	and	chosen	parameters,	the
ratio



κmaκm=ωωMωH(ωH+ωM)−ω2≪1.

Taking	into	account	this	inequality,	we	get

1±κmaκm≃1±κma2κm,1+κmaκm−1−κmaκm≃1+κma2κm−(1−κma2κm)=κmaκm.
Thus,

l=πc4ωκκm.11+κma/κm−1-κma/κm≃πc4ωκκm.κmκma.
By	substituting	in	the	last	expression	numerical	values,	we	get	l	→	5	cm.

PROBLEMS
11.1	The	concentration	of	electrons,	N,	in	the	plasma	of	the	ionosphere	is	of
the	order	 1014	m−3.	 Calculate	 the	 plasma	 frequency	 and	 the	 value	 of	 the
static	magnetic	 field	B0	and	 the	magnetic	 field	 intensity	H0	 for	which	 the
cyclotron	frequency	is	equal	to	the	plasma	frequency.	(Answer:	ωp	=	5.60	×
108	s−1,	B0	=	3.20	×	10−3T,	H0	=	2.55	×	103	A/m.)
11.2	 The	 relative	 dielectric	 permittivity	 tensor	 in	 a	 magnetic	 field	 is
determined	 by	 Equation	 11.11.	 Find	 tensor	 η^,	 which	 then	 allows	 us	 to
determine	the	electric	field	vector	from	the	electric	displacement:	E=(ε0κ^)
−1D=ε0−1η^D.	Use	the	following	two	methods:	(a)	use	the	matrix	relation
η^κ^=κ^η^=I^,	where	Î	is	the	unity	diagonal	matrix	and	(b)	solve	Equation
11.10	for	the	electric	field	components	assuming	that	the	components	of	the
electric	 displacement	 are	 known.	 (Answer:	 The	 components	 of	 tensor	 η^
have	 the	 form	 ηxx=κyyκxxκyy−κxyκyx=κκ2−κa2, ηyy=κxxκxxκyy
−κxyκyx=κκ2−κa2,ηxy=−κxyκxxκyy−κxyκyx=−iκaκ2−κa2, ηyx=
−κyxκxxκyy−κxyκyx=iκaκ2−κa2,   ηzz=κzz−1.)
11.3	An	electrically	neutral	plasma	consists	of	electrons	and	positive	 ions
with	charge	+e.	The	electron	and	ion	masses	are	m	and	M,	respectively,	and
their	concentration	per	unit	volume	is	Ne	=	Ni	=	N.	The	plasma	is	placed	in
the	magnetic	field	B0.	Write	(a)	the	dielectric	tensor	of	the	plasma	and	(b)
the	expressions	for	the	components	of	this	tensor	taking	into	account	both
types	of	charges.	Find	the	ratio	of	the	plasma	and	cyclotron	frequencies	for
electrons	and	ions	in	the	case	of	a	helium	plasma	(mass	of	helium	ion	is	M
=	 4	 ×	 1.67	 ×	 10−27	 kg).	 (Answer:	 κ^=(κiκa0−iκaκ000κz),κ=1-
ωpe2ω2−ωce2−ωpi2ω2−ωci2,κa=ωpe2ωceω(ω2−ωce2)−ωpi2ωciω(ω2−ωci2),κz=1−ωpe2ω2−ωpi2ω2,ωpeωpi=7.34×103.)
11.4	Find	the	angle	of	rotation	of	the	polarization	plane	(Faraday	rotation)
of	 a	 linearly	 polarized	 wave	 in	 a	 collisionless	 gas	 plasma	 in	 a	magnetic
field	B0	=	0.50	T.	Assume	that	the	electron	concentration,	N,	in	the	plasma
is	 equal	 to	 1018	 m−3,	 the	 wavelength	 is	 λ	 =	 1.00	 cm,	 and	 the	 wave
propagation	 direction	 coincides	 with	 the	 direction	 of	 the	 magnetic	 field.
The	wave	path	 length	 l	=	10.0	cm.	 (Answer:	The	angle	of	 rotation	of	 the
polarization	plane	for	l	=	10.0	cm	is	ψ	=	1.6	rad	≈	92°.)



FIGURE	 11.7	 The	 frequency	 dependence	 of	 the	 imaginary	 part	 of	 the	 magnetic
permeability κm″.

11.5	A	linearly	polarized	plane	wave	of	amplitude	E0	and	wavelength	λ	=
3.00	 cm	 is	 incident	 on	 an	 area	 y	 ˃	 0	 filled	 with	 plasma	 with	 electron
concentration	N	=	1016	m−3.	The	wave	polarization	plane	makes	an	angle	of
π/4	with	the	y-axis.	The	plasma	is	placed	in	a	magnetic	field	B0	=	0.20	T,
with	field	direction	perpendicular	to	the	direction	of	the	wave	propagation.
Find	the	minimum	nonzero	distance	that	the	wave	must	travel	in	the	plasma
in	order	to	have	the	following	polarizations:	(a)	circular	and	then	(b)	linear.
(Answer:	ycircular	≈	0.19	m,	ylinear	≈	0.38	m.)
11.6	A	sample	of	yttrium	iron	garnet	with	parameters	ωm	=	3.10	×	1011	s−1

and	 relaxation	 frequency	 ωr	 =	 6.00	 ×	 108	 s−1	 is	 placed	 in	 an	 external
magnetic	field	B0	=	0.10	T.	Find	the	half	width	of	the	curve	κm”(ω),	that	is,
the	width	of	the	curve,	Δω, at κm”(ω)=(κm”)max/2	(Figure	11.7).	(Answer:
Δω = 1.20 × 109 s−1.)
11.7	 Two	 orthogonally	 polarized	 waves	 with	 a	 frequency	 f	 =	 0.30	 GHz
propagate	through	a	ferrite	sample	with	thickness	l	=	2.00	cm	in	a	direction
perpendicular	 to	 an	 external	 magnetic	 field	 B0	 =	 0.05	 T	 (and	 the
magnetization).	Find	 the	saturation	magnetization	M0	 for	 the	case	when	a
phase	difference	 equal	 to	π/12	 exists	 between	 the	 two	output	waves.	The
permittivity	of	 the	 ferrite	does	not	depend	on	 frequency	and	 is	 ε	=	κε0	=
5.25	χ	ε0.	(Answer:	M0	=	9.80	×	104	A/m.)
11.8	A	 linearly	 polarized	wave	with	 amplitude	E0	 is	 incident	 on	 a	 ferrite
sample	of	thickness	l,	which	is	placed	in	an	external	magnetic	field.	A	wave
propagates	 in	 the	 ferrite	 along	 the	 magnetic	 field	 (and	 therefore	 the
magnetization).	 This	 wave	 can	 be	 decomposed	 into	 a	 right	 circularly
polarized	 and	 a	 left	 circularly	 polarized	 wave.	 Find	 the	 ratio	 of	 the
amplitudes	of	waves	of	these	circularly	polarized	waves	when	they	exit	the
sample.	(Answer:	A+(l)A−(l)=exp[	κ″−−κ″+	].)



12Electromagnetic	Waves	in	Amplifying
Media

The	analysis	 of	 the	phenomenon	of	 refraction	of	 electromagnetic	waves	 at	 the	 interface
between	two	media	suggests	that	their	velocity	when	passing	from	one	medium	to	another
changes.	It	has	previously	been	shown	that	 the	phase	velocity	of	a	wave	in	a	medium	is
determined	by	the	expression	vph	=	c/n,	where	n	is	the	medium	refractive	index.	Numerous
measurements	indicate	a	dependence	of	the	propagation	velocity	and	the	refractive	index
on	the	frequency	(or	wavelength).	The	wave	velocity	(or	the	refractive	index)	dependence
on	 frequency	 is	 called	 dispersion.	 This	 phenomenon	 is	 present	 in	 all	 media	 except
vacuum,	and	we	considered	several	specific	cases	of	dispersion	in	Chapters	6,	7,	and	11.
The	 phenomenon	 of	 light	 dispersion	 can	 also	 be	 observed	when	 a	 beam	 of	white	 light
passes	through	a	glass	prism.	One	can	observe	a	pattern	of	multicolor	bands	on	a	screen
placed	behind	the	prism.	This	pattern	is	a	result	of	the	decomposition	of	white	light	into	its
spectral	components	that	have	different	colors	and	hence	different	wavelengths.

The	dispersion	in	any	medium	is	caused	by	absorption.	An	electromagnetic	wave	loses
part	 of	 its	 energy	 in	 order	 to	 excite	 atoms	 and	nuclei	 of	 the	medium	 from	a	 lower	 to	 a
higher	energy	state.	Deexcitation	of	atoms	and	nuclei	produces	secondary	emission.	In	an
ideal	homogeneous	nonconducting	medium,	 the	 secondary	 reradiated	waves	 fully	 return
the	 absorbed	 fraction	 of	 the	 energy	 used	 on	 the	 excitation	 of	 the	 medium.	 In	 the	 real
medium,	not	all	 the	energy	of	 the	atoms	and	nuclei	 is	returned	in	the	form	of	secondary
electromagnetic	waves.	Part	of	 it	 is	converted	 into	other	 forms	of	energy,	primarily	 into
heat.

In	addition	to	the	absorption	under	certain	conditions,	some	media	can	amplify	optical
radiation.

In	 this	chapter,	we	describe	the	basic	principles	of	amplification	and	discuss	 the	main
features	of	wave	propagation	 in	amplifying	media.	Amplifying	media	 are	 defined	 to	 be
media	that	can	amplify	the	optical	radiation	at	a	particular	frequency	that	corresponds	to	a
quantum	transition.	Amplification	occurs	due	to	the	induced	coherent	emission	by	excited
atoms	under	the	influence	of	the	field	of	the	electromagnetic	wave.

12.1		DISPERSION	OF	ELECTROMAGNETIC	WAVES
1.	 Maxwell’s	 equations	 do	 not	 contain	 any	 atomic	 and	 molecular	 parameters,	 so	 they
cannot	 explain	 the	 phenomenon	 of	 dispersion	 caused	 by	 absorption.	 This	 requires
knowledge	of	the	properties	of	matter	at	the	atomic	level.	Dispersion	of	light	occurs	as	a
result	 of	 forced	 oscillations	 of	 atomic	 electrons	 and	 ions	 caused	 by	 the	 time-dependent
electric	field	of	an	electromagnetic	wave.	When	an	electromagnetic	wave	propagates	in	a
medium,	 the	 electric	 component	 of	 the	 wave	 field	 causes	 an	 oscillatory	 motion	 of
electrons	 in	 the	 atoms	 and	 molecules	 of	 the	 medium.	 Oscillating	 electrons	 themselves
become	 sources	 of	 secondary	 electromagnetic	 waves	 of	 the	 same	 frequency.	 These
secondary	waves	 are	 superimposed	on	 each	 other	 and,	 together	with	 the	 incident	wave,



form	 the	 net	 resulting	 field	 in	 the	 medium.	 The	 change	 of	 the	 phase	 velocity	 of	 an
electromagnetic	wave	in	a	medium	is	a	consequence	of	 the	superposition	of	 the	incident
wave	 with	 the	 secondary	 waves.	 The	 change	 of	 the	 phase	 velocity	 results	 in	 a
corresponding	change	of	the	refractive	index.

Along	 with	 these	 effects,	 any	 medium	 (except	 vacuum)	 exhibits	 absorption	 of
electromagnetic	 wave.	 The	 absorption	 mechanism	 can	 be	 explained	 as	 follows.	 The
electromagnetic	wave	uses	part	of	its	energy	to	excite	oscillations	of	the	electrons.	In	an
ideal	 homogeneous	 nonconducting	medium,	 the	 reradiated	 secondary	waves	 completely
give	back	all	the	absorbed	energy	used	for	the	excitation	of	oscillations.	In	a	real	medium,
not	 all	 the	 energy	 of	 the	 oscillating	 electrons	 is	 returned	 in	 the	 form	 of	 secondary
electromagnetic	waves.	Part	of	 it	 is	 transformed	 into	other	 forms	of	energy,	mainly	 into
heat	in	the	medium.

Let	us	consider	the	interaction	of	electromagnetic	waves	with	matter,	using	an	idealized
model,	that	of	a	gaseous	medium.	This	model	is	characterized	by	its	simplicity	because,	to
first	 approximation,	 it	 is	 possible	 to	 ignore	 interactions	between	atoms	or	molecules.	 In
addition,	we	can	assume	that	the	field	acting	on	a	single	atom	coincides	with	the	average
field	in	the	medium.	Under	such	assumptions,	it	is	sufficient	to	consider	the	action	of	the
electromagnetic	 wave	 field	 on	 an	 isolated	 atom	 to	 find	 the	 equations	 that	 describe	 the
system.

Electrons	in	an	atom	can	be	divided	into	two	groups:	external	electrons	and	electrons	of
the	inner	shells.	Note	that	only	the	external	electrons	interact	with	the	incoming	radiation.
Frequencies	that	correspond	to	the	oscillations	of	the	inner	electrons	are	so	high	that	the
field	of	waves	up	to	the	light	frequencies	does	not	interact	with	them.	The	consideration	of
these	 electrons	 becomes	 essential	 only	 for	 X-ray	 radiation.	 The	 displacement	 of	 an
external	electron	from	its	position	of	equilibrium	(in	the	classical	representation)	results	in
the	 appearance	 of	 a	 restoring	 force	 that	 tends	 to	 return	 the	 electron	 to	 its	 equilibrium
position.	Therefore,	under	 the	influence	of	 the	electric	field	of	an	electromagnetic	wave,
the	electron	will	perform	forced	oscillations.

2.	In	the	case	of	propagation	of	a	linearly	polarized	monochromatic	wave	with	frequency
ω	in	a	medium,	the	wave	electric	field	is

E(t,r)=Em exp[	i(ωt−k⋅r)	]. (12.1)

Since	 the	atomic	dimension	a	≈	2	×	10−10	m	 is	much	 smaller	 than	 the	wavelength	 (λ	~
10−8	 –	 10−5	 m),	 it	 is	 possible	 to	 neglect	 the	 change	 in	 the	 wave	 phase	 across	 atomic
distances:	k	 ⋅	 r	 ≈	 2πa/λ	≪	 1.	 Therefore,	 the	 electric	 field	 of	 an	 electromagnetic	wave
acting	on	an	atom	can	be	assumed	to	depend	only	on	time,	that	is,	E(t)=Em exp(iωt).	This
field	 causes	 a	 displacement	 of	 an	 external	 electron	 in	 an	 atom	 from	 its	 equilibrium
position.

The	 excited	 atoms	 emit	 secondary	 monochromatic	 waves	 with	 frequencies	 that	 are
specific	for	each	substance.	Therefore,	we	can	assume	that	the	coupling	strength	of	such
electron	 with	 its	 atom	 is	 quasielastic	 and	 the	 force	 dependence	 on	 the	 electron
displacement	 is	 determined	by	Fu	 =	−βr,	where	 β	 is	 the	 coupling	 constant.	 The	 energy



losses	 caused	 by	 the	 emission	 of	 the	 secondary	waves	 and	 electron	 deceleration	 can	 be
approximately	 taken	 into	 account,	 if	we	 introduce	 a	 damping	 force	Fr=−b(dr/dt),	where
dr/dt	 is	 the	 electron	 velocity	 and	 b	 is	 the	 coefficient	 that	 characterizes	 damping	 of	 the
electron	motion.	Along	with	 these	forces,	 the	electron	is	affected	by	a	driving	force	that
according	to	Equation	12.1	has	the	form

F(t)=−eE(t)=−eEm exp(iωt). (12.2)

Using	Newton’s	second	law,	m(d2r/dt2)=F(t)+Fr+Fu,	we	obtain

d2rdt2+2rdrdt+ω02r=−(em)Em exp(iωt), (12.3)

where

γ	=	b/2m	is	the	damping	coefficient
ω0=B/m	is	the	intrinsic	frequency	of	the	electron	oscillations

Assuming	 that	 the	 displacement	 in	 Equation	 12.3	 is	 harmonic	 (r(t)=rm exp(iωt)),	 after
substituting	it	into	Equation	12.3,	we	get	what	is	known	as	a	“forced	oscillation”	solution:

r(t)=−(e/m)(ω02−ω2)+2iγωE(t). (12.4)

With	the	displacement	of	electrons	in	the	atoms	known,	the	polarization	of	the	medium	is
given	by	the	equation	P	=	Np.	Here,	N	is	the	number	of	atoms	in	unit	volume,	and	p	is	the
dipole	moment	of	atom.

For	atoms	with	one	external	electron,	the	dipole	momentum	is	p	=	−er,	where	e	is	the
elementary	charge,	 and	r	 is	 the	 electron	displacement	under	 the	 influence	of	 an	 electric
field.	In	this	case,	the	polarization	vector	is	P	=	–Ner.

In	 Chapter	 1,	 we	 showed	 that	 the	 polarization	 vector	 is	 related	 to	 the	 electric	 field
vector	 by	 P=ε0χE,	where	 the	 dielectric	 susceptibility	 χ	 of	 the	medium	 is	 related	 to	 the
permittivity	by	relation	κ	=	1	+	χ.	Using	these	relations,	we	obtain

P=−Ner=(Ne2/m)(ω02−ω2)+2iγωE=ε0χE, (12.5)

from	where	we	find	an	expression	for	the	relative	permittivity:

κ˜=1+χ=1+ωp2(ω02−ω2)+2iγω, (12.6)

where	 ωp=Ne2/ε0m	 is	 a	 plasma	 frequency.	 The	 permittivity	 generally	 is	 a	 complex
number,	and	 therefore,	 it	can	be	presented	 in	 the	 form	κ˜	=	κ′	−	 iκ″,	where	 the	real	and
imaginary	parts	are

κ′(ω)=1+ωp2(ω02−ω2)(ω02−ω2)2+4γ2ω2,   κ″(ω)=2γωωp2(ω02−ω2)2+4γ2ω2. (12.7)

At	very	 low	frequency,	as	ω	 tends	 to	zero,	one	gets	 from	 these	equations	κ′(ω)≈1+ωp2/
ω02,κ″(ω)≈0	and	at	the	very	high	frequency	(ω	tends	to	infinity)	κ′(ω)	≈	1,	κ″(ω)	≈	0	(see



Figure	12.1).	The	imaginary	part,	κ″(ω),	reaches	its	maximum	value	at	ω	=	ω0.

3.	 The	 complex	 refractive	 index,	 which	 is	 related	 to	 the	 complex	 permittivity,	 in	 its
general	form	is	given	by

n˜=κ˜κm=n−iκ, (12.8)

where

κm	is	the	magnetic	permeability
n	 is	 the	 real	 part	 of	 the	 refractive	 index	 that	 in	 the	 literature	 is	 named	 simply
refractive	index	in	contrast	to	the	complex	refractive	index,	ñ
κ	is	the	imaginary	part	also	known	as	the	extinction	coefficient

It	is	important	that	the	phase	velocity	is	determined	by	the	refractive	index:	vph	=	c/n.	 In
this	 section,	we	will	 consider	 a	 nonmagnetic	medium,	 for	which	with	 a	 high	 degree	 of
accuracy,	κm	=	1.	Let	us	now	square	the	expression	κ˜=n−iκ,	and	as	a	result,	we	obtain

n2−κ2=κ′, 2nκ=κ″. (12.9)

The	 solution	 of	 this	 system	 of	 equations	 leads	 to	 the	 following	 expressions	 for	 the
refractive	index	and	the	extinction	coefficient:

n=12((κ′)2+(κ″)2+κ′)1/2,   κ=12((κ′)2+(κ″)2−κ′)1/2. (12.10)

FIGURE	12.1	Frequency	dependence	of	the	real	part	κ′(ω)	(solid	line)	and	imaginary	part
κ″(ω)	 (dashed	 line)	 of	 a	 complex	 relative	 permittivity	 in	 the	 vicinity	 of	 the	 intrinsic
absorption	frequency	ω0.

Using	relationships	(12.7)	for	the	real	and	imaginary	parts	of	the	dielectric	permittivity,	it
is	possible	to	determine,	from	Equation	12.10,	the	frequency	dependence	of	the	refractive
index	and	the	extinction	coefficient.	The	dependence	of	the	refractive	index	on	frequency,
n(ω),	is	known	as	dispersion.	The	dependence	of	the	extinction	coefficient	on	frequency,
κ(ω),	determines	the	spectral	line	shape	of	the	absorption.

In	the	model	described	earlier,	the	real	part	of	the	refractive	index,	n(ω),	behaves	like	κ′
(ω)	in	Figure	12.1,	that	is,	for	frequencies	ω	<	ω0	–	γ	increases	with	increasing	frequency,
reaching	 a	 maximum	 value	 in	 the	 vicinity	 of	 ω	 =	 ω0	 –	 γ,	 and	 then	 decreases	 with



increasing	 frequency.	 The	 refractive	 index,	 n(ω),	 becomes	 equal	 to	 1	 at	 ω0	 if	 γ	 =	 0;
otherwise,	 it	 is	 larger	 than	 1	 at	 ω	 =	 ω0.	 It	 becomes	 less	 than	 unity	 for	 ω	 >	 ω0.	 The
minimum	of	function	n(ω)	occurs	in	the	vicinity	of	the	frequency	ω	=	ω0	+	γ.	At	higher
frequencies,	the	real	part	of	the	refractive	index	increases	and	asymptotically	approaches
unity.	The	extinction	coefficient	κ(ω)	behaves	like	κ″(ω)	in	Figure	12.1,	that	is,	it	has	its
maximum	value	at	frequency	ω	=	ω0;	 the	width	of	the	resonance	curve	(i.e.,	 the	spectral
absorption	line)	at	half	maximum	is	equal	to	2γ.

The	 phenomenon	 of	 the	 refractive	 index	 decrease	 with	 increasing	 frequency,	 which
takes	 place	 within	 the	 width	 of	 the	 spectral	 absorption	 line,	 is	 called	 anomalous
dispersion.	In	this	frequency	range,	dn(ω)/dω	<	0.

At	 frequencies	 far	 from	 the	 intrinsic	 frequency	 of	 electrons’	 oscillations,	 where	 the
condition	|	ω-ω0	|≫2γ	is	satisfied,	the	imaginary	part	in	Equation	12.6	can	be	neglected.
In	 this	 case,	 we	 obtain	 the	 following	 approximate	 expression	 for	 the	 frequency
dependence	of	refractive	index:

n2(ω)=κ(ω)=1−ωp2ω2−ω02. (12.11)

At	 those	 frequencies	 for	which	 the	 expression	 given	 earlier	 is	 applicable,	 the	 refractive
index	increases	with	increasing	frequency,	that	is,	dn/dω	>	0.	Such	dependence	of	n(ω)	is
called	normal	dispersion.

For	low	frequencies	(ω	<	ω0),	the	refractive	index	is	greater	than	unity,	that	is,	the	phase
velocity	vph	=	c/n	of	the	wave	in	a	medium	is	smaller	than	the	velocity	of	light	in	vacuum.
This	 means	 that	 the	 phase	 of	 a	 wave	 in	 the	 medium	 is	 retarded	 compared	 to	 its
propagation	in	a	vacuum.	Such	a	situation	occurs,	for	example,	during	the	propagation	of
visible	 radiation	 through	 transparent	 substances	 such	 as	 glass	 or	 quartz.	 The	 intrinsic
optical	absorption	frequencies	of	the	electrons	in	the	atoms	of	these	substances	are	in	the
ultraviolet	spectral	range	and	for	visible	light	ω	<	ω0.

If	 the	 frequency	of	 the	 radiation	 is	greater	 than	 the	 intrinsic	 frequency	(ω	>	ω0),	 then
n(ω)	<	1	and	the	phase	velocity	of	the	wave	in	the	medium	is	greater	than	the	velocity	of
light	in	a	vacuum,	that	is,	the	wave	modified	by	the	medium	in	such	a	way	that	its	phase
advances	with	respect	to	the	wave	propagation	in	vacuum.	This	fact	is	not	in	contradiction
with	 the	 theory	of	 relativity,	which	states	 that	 the	velocity	of	signal	 transmission	cannot
exceed	the	speed	of	light	in	vacuum.	The	concepts	of	refractive	index	and	phase	velocity
are	 applicable	 only	 to	 simple	 harmonic	 (monochromatic)	 waves	 that	 have	 an	 infinite
extent	 in	 space	 and	 time.	 Thus,	 a	 monochromatic	 wave	 cannot	 be	 used	 for	 signal
transmission.

Equation	12.11	is	true	for	a	wide	frequency	range,	and	it	is	substantially	simplified	for
high	 frequencies,	 ω	 ≫	 ω0.	 The	 high-frequency	 approximation	 describes	 well	 the
dispersion	 of	 X-rays	 in	 glass	 as	 the	 X-ray	 radiation	 has	 frequencies	 that	 are	 several
thousand	times	higher	than	the	frequency	of	visible	light	and	frequency	ω0.	Here	n(ω)	<	1,
although	not	very	different	from	1,	since	in	this	case	the	frequency	is	high.	A	similar	result
is	 obtained	 when	 describing	 the	 propagation	 of	 radio	 waves	 in	 the	 ionosphere.	 The



ionosphere	 consists	 of	 gaseous	 plasma	 in	which	 electrons	 are	 practically	 free.	 Thus,	 in
Equation	12.11	it	is	possible	to	put	ω0	=	0,	and	for	such	electrons	the	condition	ω	≫	ω0
will	 always	be	 satisfied	 even	 in	 the	 radio	 frequency	 range.	 In	 this	 case,	Equation	 12.11
takes	the	form

n2(ω)=1−ωp2ω2. (12.12)

The	discussed	theoretical	considerations	are	valid	not	only	for	electrons	but	also	for	ions
for	 which	 a	 classical	 description	 is	 more	 appropriate	 as	 their	 masses	 are	 substantially
higher	than	the	electron	mass.	It	should	be	added	that	as	a	rule,	in	all	substances,	even	in
monoatomic	gases	with	one	optically	active	electron	(i.e.,	only	one	free	electron	per	one
ion),	there	is	not	one	but	several	absorption	bands.	To	account	for	this	fact,	we	assume	that
any	substance	is	made	of	particles	of	various	types—electrons	and	ions,	which	behave	as
damped	harmonic	oscillators	with	different	intrinsic	frequencies	and	damping	coefficients.
In	this	case,	Equation	12.6	can	be	generalized	as	follows:

κ˜(ω)=1−∑lflωpl2(ω2−ω0l2)−2iγlω, (12.13)

where	the	factor	 fl	 is	called	the	oscillator	strength	 (for	each	type	of	oscillator)	and	must
satisfy	the	condition

∑lfl=1. (12.14)

According	to	Equation	12.13	to	each	intrinsic	frequency,	there	corresponds	an	absorption
band,	near	which	the	index	of	refraction	changes	anomalously.	The	frequency	dependence
of	the	refractive	index	is	shown	schematically	in	Figure	12.2.

FIGURE	12.2	Frequency	dependence	of	refractive	index	of	a	medium	in	the	presence	of
several	intrinsic	frequencies	ω0l.

Exercise	12.1
A	medium	is	described	by	a	complex	dielectric	permittivity	whose	frequency	dependence
is	given	by	Equation	12.6.	Find	the	frequency	dependence	of	the	real	part	of	the	medium’s
conductivity.

Solution.	The	dielectric	and	conducting	properties	of	a	medium	may	be	described	either
by	medium’s	complex	dielectric	permittivity	κ˜	=	κ′	−	iκ″	or	by	its	complex	conductivity
σ˜	=	σ′	−	iσ″.	In	order	to	demonstrate	this,	let	us	rewrite	Ampere’s	law	as

∇×H=j+∂D∂t
and	the	electric	displacement	and	current	density	for	the	medium	are	D	=	ε0κE	and	j	=	σE,



where	κ	and	σ	are	assumed	to	be	real.	For	a	monochromatic	wave	with	frequency	ω,

∂D(t)∂t=iωD(t)=iωε0κE(t).

Let	us	substitute	these	last	relationships	into	Ampere’s	law:

∇×H=j+∂D∂t=σE+iωε0κE=(σ+iωε0κ)E=iωε0κ˜E=σ˜E.
Here,

iωε0κ˜=iωε0(κ′−iκ″)=σ+iωε0κ,   κ=κ′,   σ=σ′=ωε0κ″.

In	order	to	find	medium’s	conductivity,	let	us	use	the	expression	for	the	complex	dielectric
permittivity	from	Equation	12.7:

κ˜=κ′−iκ″=1−ωp2(ω2−ω02)(ω2−ω02)2+4γ2ω2−i2γωωp2(ω2−ω02)2+4γ2ω2.

Taking	 into	 account	 the	 expression	 for	 the	 imaginary	 part	 of	 the	 complex	 dielectric
permittivity,	we	get

σ=σ′=ωε0κ″=ωε02γωωp2(ω2−ω02)2+4γ2ω2 =2ε0γω2ωp2(ω2−ω02)2+4γ2ω2.

This	 expression	 gives	 the	 conductivity	 of	 a	 medium	 with	 bound	 electrons,	 that	 is,	 the
conductivity	of	a	dielectric.	For	a	medium	with	free	electrons,	ω0	=	0.	Therefore,	for	the
conductivity	of	a	metal,	we	get	the	following	frequency	dependence:

σ=σ′=2ε0γωp2ω2+4γ2.

12.2		ATTENUATION	OF	WAVES	IN	AN	ABSORBING
MEDIUM:	BOUGUER’S	LAW

An	electromagnetic	wave	is	attenuated	as	it	passes	through	a	medium.	The	main	reason	for
this	 attenuation	 is	 absorption—the	 phenomenon	 that	 consists	 of	 the	 decrease	 in	 the
intensity	of	 an	electromagnetic	wave	propagating	 in	matter	due	 to	 the	 interaction	of	 the
wave	with	 the	constituent	particles	 (atoms	and	molecules)	of	matter.	As	a	 result	of	such
interaction,	part	of	the	wave	intensity	is	transformed	into	heat	of	the	medium.	The	law	of
attenuation	 of	 light	 in	 a	 medium	 has	 been	 experimentally	 investigated	 by	 the	 French
scientist	P.	Bouguer.

Consider	a	beam	of	parallel	rays	propagating	in	an	absorbing	medium	along	the	y-axis.
The	beam’s	initial	intensity	(at	y	=	0)	is	equal	to	I0.	After	traveling	through	the	medium	a
distance	y,	the	light	is	attenuated,	due	to	absorption,	and	its	intensity	becomes	smaller	than
I0.

Let	us	consider	a	layer	of	thickness	dy.	The	intensity	of	light	at	a	distance	y	+	dy	will
differ	by	dl	from	the	intensity	I(y)	that	was	at	a	distance	y,	that	is,	it	is	equal	to	I	+	dI.	The
value	dI	 represents	 the	 flux	 of	 light	 energy	 absorbed	 by	 thickness	 dy	 and	 is	 therefore
negative.	This	value	is	proportional	to	the	thickness	dy	of	this	layer	and	the	intensity	I(y)
of	the	light	incident	on	this	layer,	that	is,

dI=−αI(y)dy. (12.15)

The	 coefficient	 of	 proportionality	 α	 is	 called	 the	 coefficient	 of	 absorption	 of	 the



electromagnetic	wave.	If	we	separate	the	variables	in	Equation	12.15,	we	get

dII=−αdy. (12.16)

We	then	integrate	this	expression	in	the	range	from	I0	for	y	=	0	to	I(y).	Thus,	we	get

∫I0IdII=−α∫0ydy,   I(y)=I0 exp(−αy). (12.17)

This	 expression	 is	 called	 Bouguer’s	 law.	 The	 physical	 meaning	 of	 the	 absorption
coefficient	is	easy	to	establish	by	transforming	Equation	12.17	as	follows:

α=y−1lnI0I(y). (12.18)

If	 the	 layer	 thickness	 to	 be	 chosen	 is	 such	 that	 I0/I(y)=e,	 then	 ln(I0/I(y))=1	 and	 the
thickness	 of	 the	 layer	 is	 equal	 to	 y	 =	 α−1.	 Thus,	 the	 absorption	 coefficient	 has	 the
dimension	of	reciprocal	length	(m−1)	and	the	reciprocal	value	of	the	absorption	coefficient
is	 numerically	 equal	 to	 the	 distance	 in	 a	 medium,	 at	 which	 the	 intensity	 of	 light	 is
decreased	by	a	factor	e.

The	 exponential	 dependence	 of	 the	 wave	 intensity	 on	 distance	 y	 is	 shown	 in	 Figure
12.3.	For	a	plane	monochromatic	wave	propagating	 in	a	metal,	Equation	7.11	yields	 the
following	expressions	for	the	amplitudes	of	the	electric	and	magnetic	fields	of	a	wave	that
propagates	in	y-direction:

E(y)=E0 exp(−yδ),   H(y)=H0 exp(−yδ), (12.19)

where	 parameter	 δ	 is	 the	 penetration	 depth	 of	 the	wave	 in	 the	metal.	This	 parameter	 is
related	with	 the	 extinction	 coefficient	 through	 the	 expression	 δ=1/k0κ=c/ωκ.	 If	we	 take
into	account	that	the	intensity	of	a	wave	is	proportional	to	the	square	of	the	amplitude	of
the	electric	field,	that	is,	I	~	|E|2,	we	get	α=2/δ=2ωκ/c.

FIGURE	12.3	Dependence	of	intensity	on	a	depth	of	wave	penetration	into	a	medium.

Generally,	the	absorption	coefficient	depends	on	the	frequency	of	the	incident	radiation
and	also	on	the	absorbing	material.	For	example,	monoatomic	gases	and	vapors	of	metals
that	have	large	interatomic	distances	from	each	other	have	absorption	coefficients	close	to
zero.	Sharp	absorption	maxima	occur	only	for	very	narrow	spectral	ranges	in	the	vicinity
of	the	frequencies	of	intrinsic	oscillations	of	the	electrons	in	the	constituent	atoms.	This	is



known	as	a	line	absorption	spectrum.

The	absorption	spectrum	of	molecules	is	determined	by	atomic	oscillations	in	molecules
is	characterized	by	wider	absorption	bands.	The	absorption	coefficient	for	dielectrics	in	a
wide	 spectral	 range	 is	 insignificant	 (α	 ~	 10	 −3-10−1	 m−1).	 The	 coefficient	 α	 sharply
increases	in	particular	wavelength	ranges	(absorption	bands),	which	form	the	continuous
absorption	spectrum.	This	is	due	to	the	fact	that	there	are	no	free	electrons	in	dielectrics,
and	 light	 absorption	 is	 caused	by	quantum	 transitions	between	 energy	bands,	which	 are
characteristic	for	each	dielectric	material.

The	absorption	coefficient	for	a	metal	has	high	values	(α	~	105-107	m−1),	and	for	 this
reason	metals	are	opaque	to	light.	In	metals,	free	electrons	moving	under	the	influence	of
the	electric	field	of	the	light	wave	generate	fast	alternating	currents,	which	results	in	the
generation	of	Joule	heating.	Therefore,	the	energy	of	a	light	wave	decreases	rapidly	with
distance,	 and	 it	 is	 converted	 into	 thermal	 energy	 of	 the	 metal.	 The	 higher	 the	 metal
conductivity,	the	greater	the	light	absorption	rate.

Wave	attenuation	 is	not	necessarily	 associated	with	 the	 absorption	of	 electromagnetic
energy.	If	the	dielectric	permittivity	is	real	but	negative	(i.e.,	κ″	=	0,	κ′	<	0),	the	refractive
index	n˜=i|	κ′	 |	 is	 imaginary,	so	the	radiation	cannot	penetrate	into	the	material,	and	as	a
result,	total	reflection	of	the	incident	wave	takes	place.

The	 dependence	 of	 the	 absorption	 coefficient	 on	 wavelength	 explains	 the	 color	 of
absorbing	bodies.	For	example,	glasses	that	absorb	weakly	the	red	and	orange	part	of	the
spectrum	but	 strongly	 absorb	green	 and	blue	wavelengths,	when	 illuminated	with	white
light,	 will	 appear	 reddish.	 This	 phenomenon	 is	 used	 for	 the	 fabrication	 of	 light	 filters,
which	 depending	 on	 chemical	 composition	 transmit	 light	 of	 only	 certain	 wavelengths
while	absorbing	others.

Bouguer’s	law	holds	for	a	wide	range	of	electromagnetic	radiation—from	radio	waves
to	X-rays	and	gamma	rays.	However,	it	must	be	kept	in	mind	that	under	certain	conditions
it	 is	 only	 an	 approximation.	 Thus,	 for	 linear	 wave	 processes,	 which	 take	 place	 at	 low
radiation	 intensity,	 the	 absorption	 coefficient	 does	 not	 depend	 on	 the	 intensity.	 For
sufficiently	large	values	of	the	intensity,	the	absorption	coefficient	of	a	medium	begins	to
depend	on	intensity	and	Bouguer’s	law	is	violated.

As	a	rule,	an	increase	in	the	intensity	of	incident	radiation	results	in	a	decrease	of	the
absorption	 coefficient.	 This	 fact	 cannot	 be	 explained	within	 the	 framework	 of	 classical
physics	 but	 finds	 an	 explanation	 if	 quantum	 mechanics	 is	 used	 instead.	 During	 light
absorption,	a	fraction	of	the	atoms	and	molecules	in	the	absorbing	medium	appear	in	their
excited	 states.	These	 atoms	or	molecules	 can	no	 longer	participate	 in	 further	 absorption
until	 they	 return	 to	 their	 ground	 state.	 Bouguer’s	 law	 holds	 true	 only	 if	 the	 number	 of
excited	 atoms	 and	 molecules	 is	 a	 small	 fraction	 of	 the	 total	 number	 of	 atoms	 and
molecules	in	the	medium.

Exercise	12.2
A	plane	wave	E=E0 exp[	i(ωt−k0x)	]	is	incident	normally	on	an	absorbing	layer.	Here,	ω,
c,	and	k0	=	ω/c	are	the	frequency,	speed,	and	wave	number	of	the	electromagnetic	wave	in
vacuum,	 respectively.	 The	 layer	 thickness	 is	 equal	 to	 l,	 and	 its	 complex	 dielectric



permittivity	 is	 equal	 to	 κ˜	 =	 κ′	 −iκ″.	 Find	 the	 amplitude	 of	 the	 electric	 field	 of	 the
electromagnetic	wave	 after	 it	 exits	 the	 absorbing	 layer,	 and	write	 an	 expression	 for	 the
wave’s	field	for	incident	wave	(reflected	waves	must	be	ignored),	wave	in	the	absorbing
layer,	and	wave	transmitted	through	the	layer.

Solution.	Let	us	assume	that	the	surface	on	which	the	wave	is	incident	is	defined	by	the
coordinate	x	=	0.	Therefore,	the	field	inside	the	layer	is	described	by	the	expression

E(t,x)=E1exp[	i(ωt−k1x)	],

where	 the	 amplitude	E1	 =	E0	 from	 the	 continuity	 of	 the	 tangential	 components	 of	 the
electric	 field	 at	 the	 interface	 of	 the	 two	 media.	 The	 magnitude	 of	 the	 wave	 vector	 is
determined	by	the	equation	k1=k0(n−iκ),	where	n	and	κ	are	real.	The	refraction	index,	n,
and	extinction	coefficient,	κ,	are	the	real	and	imaginary	parts	of	complex	refractive	index,
ñ:

n˜=n−iκ=κ′−iκ″.

By	 the	 substitution	 of	 n	 and	 κ	 into	 the	 expression	 for	 the	 wave’s	 field,	 we	 get	 the
following	expression	for	the	field	in	the	layer:

E(t,x)=E0 exp[	i(ωt−k0(n−iκ)x)	]=E0 exp(−k0κx)exp[	i(ωt−k0nx)	]=Em(x)exp[	i(ωt
−k0nx)	],   0≤x≤l,

where	the	amplitude	of	the	wave’s	field	inside	of	the	layer	is	equal	to

Em(x)=E0 exp(−k0nx)=E0 exp(−xδ),   δ=1k0κ,   α=2δ=2k0κ.

The	amplitude	of	the	wave’s	field	after	transmission	through	the	film	is	equal	to

Em(l)=E0 exp(−k0κl).

The	expressions	for	n	and	κ	can	be	found	if	we	will	square	the	complex	refraction	index	ñ:

n2−κ2−2inκ=κ′−iκ″,n2−κ2=κ′,   2nκ=κ″.

FIGURE	12.4	Distribution	of	the	wave’s	electric	field	inside	and	outside	of	the	plate.

The	solution	of	these	equations	leads	to	the	following	relationships:

n=κ′2(1+(κ′κ″)+1)1/2,κ=κ′2(1+(κ′κ″)−1)1/2.

The	wave’s	field	after	transmission	through	the	plate	is	described	by	the	expression

E(t,x)=E2exp[	i(ωt−k0x)	],    x≥l,

where	E2=Em(l)=E0 exp(−k0κl).	The	phase	velocity	of	the	wave	in	vacuum	is	equal	to	vph



=	c	and	in	the	medium	to	vph	=	c/n.

Figure	 12.4	 shows	 the	 electric	 field	 of	 a	 wave	 that	 is	 incident	 on	 a	 plate,	 traveling
through	the	plate,	and	after	transmission	through	the	plate.

12.3		AMPLIFICATION	OF	ELECTROMAGNETIC
WAVES	IN	A	MEDIUM

1.	 To	 amplify	 a	 light	 beam,	 the	 absorbing	 medium	 must	 be	 in	 a	 state	 for	 which	 the
absorption	coefficient	is	negative.	In	this	case,	according	to	Bouguer’s	law,	the	intensity	of
light	wave	as	it	propagates	in	the	medium	will	increase.	This	state	can	be	achieved	if	the
population	of	excited	atoms	and	molecules	exceeds	that	of	those	in	the	lower	energy	state
(the	lowest	energy	state	 is	called	ground	state).	Such	a	situation	is	known	as	population
inversion	and	the	medium	itself	can	amplify	an	optical	signal.

Gases,	 vapors,	 different	 liquid	 solutions,	 crystalline	 or	 amorphous	materials,	 or	 some
complex	composites	can	be	used	as	amplifying	media.	The	components	of	the	amplifying
media	must	be	chosen	so	that	atoms	of	the	media	have	higher	energy	levels/states	where
electron	can	be	excited.	The	electron	 remains	 in	 the	excited	 level	 a	 finite	 time	before	 it
goes	to	the	lower	state	this	is	why	the	higher	energy	levels	are	named	metastable	 levels.
Note	 that	 in	 the	stable	state,	an	electron	can	stay	infinitely	 long,	while	 in	 the	metastable
state,	the	lifetime	of	an	electron	is	finite;	this	is	mostly	due	to	the	existence	of	an	empty
state	with	a	lower	energy.	As	the	electron	goes	from	higher	energy	state	to	lower	energy
state,	it	emits	quanta	of	radiation	that	are	named	photon.	So	an	electron	emits	photon	as	it
goes	from	higher	energy	state	to	lower	energy	state,	and	it	absorbs	photon	as	it	goes	from
lower	energy	state	to	higher	energy	state.	In	the	ordinary	(passive)	medium,	the	radiation
of	separate	atoms	occurs	spontaneously—independently	from	each	other	at	different	times
and	in	different	directions.

In	a	passive	medium,	the	number	of	atoms	in	the	ground	state	is	always	larger	than	the
number	 populating	 the	 exited	 states.	 An	 amplifying	 medium,	 prepared	 for	 light
amplification,	must	have	most	of	 the	atoms	in	 their	excited	state.	 In	order	 to	realize	 this
condition,	 electrons	must	 continuously	gain	energy	 from	an	external	 source	 so	 that	 they
can	populate	a	metastable	energy	level.

An	 electron	 in	 a	 long-lived	 metastable	 level	 can	 make	 stimulated	 transition	 to	 the
ground	state	and	emit	a	photon.	The	stimulated	transition	is	caused	by	a	photon	(quantum
of	 electromagnetic	 radiation)	 of	 the	 same	 frequency	 as	 the	 emitted	 one.	 The	 photon
emitted	 during	 such	 a	 forced	 transition	 has	 the	 same	 phase	 as	 the	 original	 photon	 that
induced	the	transition.	After	each	interaction,	known	as	stimulated	emission,	the	number
of	photons	is	doubled,	and	an	avalanche	of	stimulated	(induced)	emission	appears	in	the
medium.	This	phenomenon—amplification	of	a	light	beam	by	an	amplifying	medium—is
called	negative	absorption.

If	 the	 absorption	 coefficient	 is	 negative	 (i.e.,	 α	 <	 0),	 the	 intensity	 of	 the	 radiation
propagating	in	the	medium	increases	exponentially	(Equation	12.17):

I(y)=I0 exp(−αy)=I0 exp(|	α	|y). (12.20)



Radiation	amplification	underlies	 the	operation	of	quantum	amplifiers	 and	generators	of
microwave	and	optical	radiation	(masers	and	lasers).	The	principle	of	their	operation	has	a
quantum	 mechanical	 origin	 and	 is	 related	 with	 stimulated	 (or	 induced)	 emission	 of
radiation.

In	 the	 framework	 of	 quantum	 mechanics,	 it	 can	 be	 described	 as	 follows:	 A	 photon
passing	through	an	amplifying	inverted	medium	induces	in	an	excited	atom	a	transition	to
its	 ground	 state.	As	 a	 result,	 an	 additional	 photon	 that	 has	 exactly	 the	 same	energy	 and
momentum	 as	 the	 original	 photon	 is	 generated.	 These	 two	 photons,	 propagating	 in	 the
medium,	 cause	 the	 generation	 of	 two	 more	 identical	 photons.	 Due	 to	 the	 induced
transitions	described	earlier,	we	have	an	avalanche-like	increase	of	the	photon	population,
that	 is,	 an	 increase	 of	 the	 light	 beam	 intensity.	 Simultaneously,	 in	 addition	 to	 the
stimulated	 transitions,	 accompanied	 by	 emission	 of	 energy,	 we	 also	 have	 radiation
absorption,	caused	by	transitions	of	the	medium’s	atoms	from	the	ground	to	their	excited
state.	 These	 transitions	 result	 in	 a	 decrease	 of	 the	 light	 intensity.	 Therefore,	 the	 net
intensity	 of	 a	 light	 beam	 passing	 through	 an	 amplifying	 medium	 is	 determined	 by	 the
prevailing	process.	If	absorption	dominates,	the	beam	intensity	decreases;	if	on	the	other
hand	stimulated	emission	dominates,	the	beam	intensity	increases.

In	 order	 to	 better	 understand	 the	 principle	 of	 amplification	 of	 the	 light	 wave	 in	 the
amplifying	medium,	 it	 is	necessary	 to	examine	more	closely	 the	processes	of	absorption
and	emission	of	photons	by	atoms.	Atom	can	exist	in	different	energy	states	with	energies
E1,	E2,…,	En.	In	the	simple	picture	of	Bohr’s	atom,	these	states	are	stable	states.	An	atom,
in	the	absence	of	external	perturbations,	can	occupy	state	of	the	lowest	energy	indefinitely.
This	is	called	the	ground	state.	All	other	states	have	a	finite	lifetime.	An	excited	atom	can
exist	in	these	states	only	for	a	very	short	time	(about	10−8	s)	after	which	it	spontaneously
makes	 a	 transition	 to	 one	 of	 the	 lower	 states,	 emitting	 a	 quantum	of	 light	 (photon).	An
electron	occupying	a	metastable	energy	level	of	an	atom	can	exist	in	that	state	for	a	much
longer	time—of	the	order	of	10−3	s.

The	 transition	 of	 an	 atom	 to	 a	 higher	 energy	 state	 can	 occur	 only	 during	 resonant
absorption	of	a	photon	whose	energy	is	equal	to	the	difference	between	the	energies	of	the
atom	in	the	initial	and	final	states,	that	is,	ℏω=|	E1−E2	|,	where	∇ω	=	1.05	×	10−34	J⋅s	is
Planck’s	constant	and	ω	is	the	frequency	of	the	absorbed	photon.	It	should	also	be	noted
that	the	transitions	between	the	energy	levels	of	the	atom	are	not	necessarily	related	to	the
absorption	 or	 emission	 of	 photons.	 Atoms	 can	 absorb	 or	 emit	 energy	 and	 move	 to	 a
different	 quantum	 state	 as	 a	 result	 of	 nonradiative	 transition,	 that	 is,	 as	 a	 result	 of
interaction	with	other	atoms	or	collisions	with	electrons.

Transition	of	an	electron	in	an	atom	from	the	upper	to	the	lower	energy	level	can	occur
under	 the	 influence	of	an	external	electromagnetic	field	whose	frequency	 is	equal	 to	 the
frequency	 of	 the	 transition.	 The	 resulting	 stimulated	 emission	 is	 significantly	 different
from	 the	 spontaneous	emission.	This	 is	due	 to	 the	 fact	 that,	 as	 a	 result	of	 interaction	of
photon	with	excited	atom,	the	atom	emits	a	photon	of	the	same	frequency	that	propagates
in	 the	 same	 direction.	 In	 terms	 of	 the	 wave	 theory,	 this	 means	 that	 the	 atom	 emits	 an
electromagnetic	wave	whose	frequency,	phase,	polarization,	and	direction	of	propagation
are	the	same	as	in	the	initial	wave.	As	a	result	of	the	stimulated	emission	of	photons,	the
amplitude	of	the	propagating	wave	in	the	medium	increases.



2.	 Let	 us	 consider	 a	 layer	 of	 transparent	 material	 whose	 atoms	 can	 populate	 only	 two
states	with	 energy	E1	 and	E2	 >	E1.	 Such	 system	 is	 called	 the	 two-level	 system.	 Let	 the
radiation	 with	 the	 resonant	 frequency	 of	 the	 transition	 ω=(E2−E1)/ℏ	 propagate	 in	 the
layer.	According	 to	 the	Boltzmann	distribution,	at	 thermodynamic	equilibrium,	 there	are
more	atoms	in	the	lowest	energy	state.	Some	of	the	atoms	will	be	in	the	upper	energy	state
receiving	the	necessary	energy	in	collisions	with	other	atoms.	The	number	of	atoms	in	the
state	with	energy	E1	is	equal	to	n1	while	the	number	of	atoms	in	the	state	with	energy	E2	is
equal	to	n2.	These	numbers	are	called	the	populations	of	the	lower	and	upper	levels,	and
n2	<	nj	when	E2	>	E1.	During	the	propagation	of	resonant	radiation	in	such	medium,	three
processes	 occur	 as	 shown	 in	 Figure	 12.5.	 Einstein	 showed	 that	 the	 process	 of	 resonant
absorption	of	a	photon	by	the	unexcited	atom	(a)	and	the	process	of	induced	emission	of	a
photon	by	an	excited	atom	(c)	have	the	same	probabilities.	Since	in	the	equilibrium	system
n2	<	n1,	the	photon	absorption	will	occur	more	frequently	than	the	induced	emission.	As	a
result	of	passing	through	the	material	layer,	the	radiation	intensity	decreases.

Spontaneous	transitions	without	external	 influence	occur	 if	electrons	are	at	 the	energy
state	E2	 above	 the	 available	 energy	 state	E1.	The	 reason	 for	 these	 transitions	 is	 that	 the
system	 tends	 to	 minimize	 energy	 and	 eventually	 turns	 into	 an	 unexcited	 state.	 The
probability	of	 spontaneous	 transition	of	an	electron	with	emitted	energy	ℏω=(E2−E1)	 is
determined	 by	 the	 Einstein	 coefficient	 A21,	 that	 is,	 W21=A21(s−1).	 The	 power	 of
spontaneous	emission	is	given	by

P21spont=ℏωA21n2[	(J/s)m−3	]. (12.21)

Radiation	produced	as	a	result	of	spontaneous	transitions	is	incoherent	and	propagates	in
all	directions.

Induced	 transitions	 can	 occur	with	 an	 increase	 and	 decrease	 in	 the	 energy,	 and	 these
transitions	 correspond	 to	 the	 absorption	 and	 emission,	 respectively.	 For	 induced
transitions,	the	following	statements	are	valid:

•	The	photons	with	energy	ħω	of	the	induced	transitions	of	the	electromagnetic
field	are	identical	to	the	photons	that	caused	this	transition.

FIGURE	 12.5	 Energy	 diagram	 and	 schematic	 representation	 of	 the	 absorption	 (a),
spontaneous	(b),	and	induced	(c)	emissions	of	a	photon.

•	 The	 probability	 of	 induced	 transitions	 is	 different	 from	 zero	 only	 for	 the
external	field	that	has	resonant	frequency	ω=(E2−E1)/ℏ,	and	the	probability	of
transition	 is	 proportional	 to	 the	 spectral	 energy	 density	 (with	 the	 dimension	 J



s/m3)	at	this	frequency

W12ind=B12u(ω),   W21ind=B21u(ω). (12.22)

Here,	B12	and	B21	are	the	Einstein	coefficients	that	determine	the	probability	of	direct	and
inverse	induced	transitions.	The	spectral	energy	density	is	related	with	the	volume	energy
density	by	the	equation

u(ω)=d⋅wdω,   w=∫u(ω)dω, (12.23)

where	the	integration	has	to	be	carried	out	over	a	frequency	range	over	which	the	emission
occurs.	Generally,	the	spectral	interval	of	stimulated	emission	Δωl,	(width	of	the	emission
line)	 is	much	 smaller	 than	 the	 average	 frequency	 at	which	 the	 radiation	ω0	 occurs	 (the
carrier	frequency	of	the	wave	packet),	that	is,	Δlω	≪	ω0.	Accordingly,	the	volume	energy
density	and	spectral	density	can	be	expressed	as	w	=	u(ω)Δωl.

Let	us	write	the	expression	for	the	power	of	stimulated	absorption	and	emission:

P12ind=ℏωB12u(ω)n1,   P21ind=ℏωB21u(ω)n2. (12.24)

Under	 conditions	 of	 thermodynamic	 equilibrium,	 the	 power	 absorbed	 by	 a	 medium	 is
equal	to	the	total	radiated	power,	that	is,

P12ind=P21spont+P21ind,ℏωB12u(ω)n1=ℏωA21n2+ℏωB21u(ω)n2. (12.25)

From	this	equation,	we	obtain	the	following	expression	for	the	spectral	density:

u(ω)=A21n2B12n1−B21n2=A21B21.1B12n1/B21n2−1. (12.26)

In	accordance	with	statistical	mechanics,	the	number	of	atoms,	which	may	be	in	the	state
of	energy	El,	is	equal	to

nl=n0 exp(−ElkBT), (12.27)

where

kB	is	the	Boltzmann	constant
T	is	the	absolute	temperature

According	 to	 this	 equation,	 the	 ratio	 of	 the	 number	 of	 atoms	 in	 the	 ground	 and	 excited
states	is

n1n2=exp(E2−E1kBT). (12.28)

From	this	relation,	we	obtain	the	following	expression:

(12.29)



u(ω)=A21B21[	B12B21exp(E2−E1kBT)−1	]−1=A21B211exp(ℏω/kBT)−1.

Here,	we	have	introduced	the	photon	energy	emitted	by	the	atom,	E2	–	E1	=	ħω,	and	took
into	account	 that	 the	probabilities	of	direct	and	inverse	 induced	transitions	are	 the	same,
that	 is,	B12	 =	B21.	 From	a	 comparison	of	 this	 expression	with	Planck’s	 equation	 for	 the
spectral	energy	density	of	blackbody	radiation,

u(ω)=ℏω3π2c31exp(ℏω/kBT)−1. (12.30)

We	find	the	relation	of	probability	of	spontaneous	and	induced	transitions	as

A21=ℏω3π2c3B21. (12.31)

Let	us	now	write	expression	(12.25)	for	the	total	radiated	power	in	the	following	form:

P21=ℏωA21n2+ℏωB21un2=ℏω(1+π2c3ℏω3u)A21n2=ℏω(ℏω3π2c3+u)B21n2. (12.32)

This	 equation	 emphasizes	 two	 components	 in	 radiation—stimulated	 emission	 and
spontaneous	emission.

3.	Let	us	consider	now	the	interaction	of	electromagnetic	waves	with	a	medium,	which	is
an	 ensemble	 of	 atoms	 in	 one	 of	 two	 possible	 energy	 states.	 Assume	 that	 the	 radiation
propagates	 in	 the	medium	 in	 the	 form	of	 a	 traveling	wave	 in	 the	direction	of	 the	y-axis
with	speed	c.	The	wave	intensity	I	(W/m2)	decreases	as	a	result	of	the	passage	through	an
absorbing	layer	with	thickness	dy	in	accordance	with	Equation	12.15:

dI=−αI dy,

where	the	absorption	coefficient	α	is	generally	a	function	of	frequency.

The	intensity	of	the	wave	is	associated	with	the	wave	energy	density	w	by	the	relation	I
=	cw,	and	therefore,

α=−1IdIdy=−1cwdwdt=−1cwP, (12.33)

where	we	took	into	account	that	the	power	density	is	associated	with	the	energy	density	as
dw/dt	=	P.

The	 change	of	 the	wave	power	 is	 equal	 to	 the	difference	between	 the	 absorption	 and
emission	in	the	media:

P=ℏωA21n2+ℏωB21u(ω)n2−ℏωB12u(ω)n1. (12.34)

The	probability	of	spontaneous	transition	is	usually	small	compared	to	the	probability	of
an	induced	transition,	so	it	can	be	neglected,	wherein

P=−ℏωB12u(ω)(n1−n2)=−ℏωB12w(ω)(n1−n2)Δωl. (12.35)



As	a	result,	we	arrive	at	the	following	expression	for	the	absorption	coefficient:

α(ω)=ℏωB12(n1−n2)cΔωl. (12.36)

Thus,	the	solution	of	Equation	12.15	in	this	case	is	a	function	I(y)	=	I0exp(–αy)	that	takes
the	form	of	Bouguer’s	law	(12.20).	From	this	law,	it	follows	that	a	>	0	for	n1	>	n2.	In	this
case,	the	situation	corresponds	to	absorption.	Amplification	is	possible	only	in	the	case	in
which	the	excited	state	is	occupied	with	more	particles	than	the	ground	state,	that	is,	n1	<
n2	 and	 the	coefficient	 a	<	0.	The	condition	with	 the	positive	parameter	n21	=	n2	 –	n1	 is
called	 inversion,	 and	 the	 corresponding	 states	 of	 the	 medium	 are	 called	 states	 with
inverted	population.

In	two-level	system,	it	is	impossible	to	achieve	such	a	state.	If	we	move	the	electrons	by
pumping	 from	 the	 lower	 to	 the	 upper	 level,	 then	 the	 equilibrium	 state	 n2	 can	 only	 get
closer	to	n1,	that	is,	n21	→	0.	In	this	case,	the	medium	is	bleached,	but	the	states	with	an
inverted	population	are	not	achieved.	So	in	order	to	achieve	amplification,	it	is	necessary
to	create	the	conditions	under	which	population	inversion	is	always	achieved,	that	is,	n2	>
n1.	To	achieve	that,	it	is	often	necessary	to	use	a	system	with	three	or	more	energy	levels.

Exercise	12.3
Compare	the	illumination	from	a	point	source	(bulb)	with	a	power	of	100	W	at	a	distance
of	R	=	10.0	m	from	the	source	and	from	a	helium–neon	laser	with	a	power	of	1	mW	at	a
distance	of	R	=	10.0	m.	The	wavelength	of	the	laser	is	λ	=	0.632	μm	and	at	the	exit	from
the	laser,	the	beam	radius	is	r0	=	0.50	mm.

Solution.	Illumination	is	defined	by	E	=	Φ/A,	where	Φ	is	the	power	of	the	source	(the	light
flux	emitted	by	the	source)	and	A	is	an	area	of	the	illuminated	surface.	Lamp	illuminates
in	all	directions,	so	at	the	distance	R	from	the	lamp	the	surface	of	the	space	of	radius	R	is
equal	to	4πR2	and	illumination	is	equal	to

Elamp=Φlamp4πR2=1004×3.14×100=0.08 1x.

For	a	laser	illuminated	surface,	area	is	determined	by	the	section	of	the	beam	whose	area
at	 a	 distance	 R	 from	 the	 source	 can	 be	 approximately	 expressed	 via	 the	 angle	 θ	 of
divergency	of	the	laser	beam:

Ab=πr2=π(θR2)2,

where

r	is	the	radius	of	the	beam	at	the	distance	R
θ	=	2λ/πr0

so

Ab=πR24(2λπr0)2=3.14×1024(2×0.632×10−63.14×0.5×10−3)=5.00×10−5m2.

Illumination	caused	by	laser	at	R	=	10	m	is

Elas=ΦlasAb=10−35×10−5=20.0  1x



and	the	ratio	of	two	illuminations	is	given	by

ElasElamp≈253.

12.4		OPTICAL	QUANTUM	GENERATORS	(LASERS)
1.	The	laser	is	a	light	source	with	properties	that	are	markedly	different	from	other	sources
such	as	incandescent	lamps,	fluorescent	lamps,	and	natural	 light—the	sun	and	stars.	The
name	 laser	 is	 the	 acronym	 of	 the	 English	 phrase	 “Light	 Amplification	 by	 Stimulated
Emission	 of	 Radiation.”	 Laser	 radiation	 possesses	 a	 number	 of	 unique	 properties:	 its
spectral	 width	 is	 much	 narrower	 than	 that	 of	 other	 light	 sources,	 the	 intensity	 of	 laser
radiation	 is	 larger	 than	 the	 intensity	of	 the	most	 intense	 light	 sources,	 and	a	 laser	beam
possesses	very	small	degree	of	divergence	and	therefore	can	reach	the	Moon	with	a	spot
diameter	of	only	several	hundred	meters.	The	laser	consists	of	three	main	components:	the
amplifying	 medium,	 in	 which	 the	 realization	 of	 inverse	 population	 of	 atomic	 levels	 is
possible;	 the	pumping	system,	which	 creates	 the	population	 inversion	of	 the	 amplifying
medium;	 and	 the	 optical	 resonator,	 which	 creates	 positive	 feedback.	 Depending	 on	 the
type	 of	 the	 amplifying	medium	used,	we	 classify	 lasers	 as	 gas	 lasers,	 solid-state	 lasers,
semiconductor	 lasers,	 and	 high-energy	 liquid	 laser.	 Each	 of	 them	 has	 its	 own
characteristics	associated	with	the	design	and	the	method	of	excitation.	A	special	class	of
system	is	a	combination	of	a	laser	and	a	quantum	amplifier.	The	amplifier	consists	of	an
amplifying	medium,	but	it	has	no	resonator.	The	amplifier	is	placed	at	the	laser	output,	and
the	 laser	pulse	causes	 induced	 transitions	 in	 the	amplifying	medium	of	 the	amplifier.	So
the	output	 from	 the	amplifier	has	 substantially	higher	 intensity	 than	 the	output	 from	 the
laser.	Such	systems	are	working	predominantly	in	pulse	mode.

Lasers	 can	 operate	 in	 the	 continuous	 mode	 or	 in	 the	 pulsed	 mode.	 Gas	 lasers	 emit
continuous	radiation,	solid-state	lasers	have	a	pulsed	output,	and	semiconductor	and	liquid
lasers	have	both	types	of	output.	The	pulse	generation	mode	is	usually	caused	by	the	pump
operating	 in	 the	 pulse	 mode	 (flash	 lamp,	 laser	 flash,	 current	 impulse,	 etc.).	 To	 obtain
single	pulses	of	high	intensity,	an	optical	shutter	is	placed	in	front	of	one	of	the	mirrors	of
its	resonator.	When	the	excess	energy	(from	a	fraction	of	a	joule	to	several	hundred	joules)
has	already	been	accumulated	by	 the	amplifying	medium	 in	 the	 resonator,	 the	 shutter	 is
opened	for	a	time	of	the	order	of	10−4–10−10	s.	At	this	moment,	the	laser	radiates	a	very
short	pulse	(duration	up	to	10−15	c)	with	a	power	that	reaches	the	order	of	109	W.

2.	 An	 amplifying	 medium	 can	 emit	 radiation	 if	 it	 is	 placed	 inside	 a	 resonator.	 An
elementary	 optical	 Fabry–Perot	 resonator	 consists	 of	 two	 parallel	 plane	mirrors,	 one	 of
which	is	semitransparent	(Figure	12.6).

Any	photon	resulting	from	spontaneous	emission	and	propagating	perpendicular	to	the
mirrors	 can	 start	 the	 amplification	 process	 and	 generate	 an	 avalanche	 of	 photons
propagating	 in	 the	 same	 direction.	 A	 small	 fraction	 is	 absorbed	 by	 the	 mirrors,	 while
another	 fraction	 escapes	 through	 the	 semitransparent	 mirror.	 The	 remaining	 part	 is
reflected	and	causes	a	further	increase	of	photon	avalanche.



FIGURE	12.6	An	elementary	optical	resonator.

Here,	we	consider	conditions	 for	 light	amplification	 in	 the	 resonator	when	 its	parallel
mirrors	 are	 arranged	 at	 a	 distance	 l.	 We	 assume	 that	 the	 amplitude	 coefficients	 of
reflection	of	each	of	the	mirrors	are	r1	and	r2	and	that	the	effective	(negative)	absorption
coefficient	of	the	amplifying	medium	is	equal	to	αef.

For	 convenience,	 we	 introduce	 the	 effective	 coefficient	 of	 amplification,	 γ.	 The
equation	of	the	primary	plane	wave,	propagating	along	the	optical	axis	of	the	system	from
the	first	mirror	to	the	second	in	the	positive	direction	of	y-axis,	is	presented	in	the	form

E(t,y)=E0 exp(γy2)exp[	i(ωt−ky)	], (12.37)

where

E0	is	the	wave	amplitude	on	the	first	mirror	(i.e.,	at	y	=	0)
k	=	k0n
n	is	a	refractive	index	of	the	amplifying	medium

After	passing	through	the	amplifying	medium	from	one	to	the	other	mirror	and	back,	the
light	travels	a	total	distance	of	2l.	The	amplitude	of	the	wave	field	is	given	by

E(t,2l)=E0r1r2exp(γl)exp[	i(ωt−2kl)	]. (12.38)

The	 condition,	 at	 which	 the	 amplification	 compensates	 the	 losses	 appearing	 due	 to
reflections	from	mirrors	and	absorption	in	the	medium,	is	described	by	the	inequality

r1r2exp(γl)>1. (12.39)

In	addition	to	this	condition,	for	amplification	of	a	wave	propagating	in	the	resonator	with
an	 amplifying	 medium,	 it	 is	 necessary	 to	 satisfy	 a	 specific	 phase	 condition.	 An
electromagnetic	wave	 at	 a	 certain	 point	 of	 the	 amplifying	medium	 after	 any	 number	 of
reflections	must	have	a	phase	that	differs	from	the	phase	of	the	primary	wave	at	the	same
point	by	a	value	multiple	2π.	In	 turn,	 this	condition	imposes	a	relation	that	connects	 the
wavelength	and	the	distance	between	resonator	mirrors:

2kl=22πλl=2πm,   l=mλ2, (12.40)



where

λ	is	the	wavelength	in	the	amplifying	medium
m	is	an	integer

Thus,	 the	 resonator	 performs	 two	 important	 functions:	 (i)	 the	 reflection	 from	 the
resonator	 mirrors	 causes	 the	 light	 wave	 to	 pass	 many	 times	 through	 the	 amplifying
medium,	 significantly	 increasing	 its	 intensity,	 (ii)	 after	 reflection	 from	 the	 resonator
mirrors,	 only	 those	 waves	 are	 amplified,	 for	 which	 the	 condition	 for	 the	 formation	 of
standing	waves	(Equation	12.40)	is	satisfied.

3.	Each	atom	of	the	amplifying	medium	possesses	a	discrete	set	of	energy	levels.	Electrons
of	an	atom	in	 its	ground	state	(the	state	with	 the	 lowest	energy)	can	absorb	 light	and	be
promoted	to	a	higher	energy	level.	A	transition	to	a	low	energy	level,	accompanied	by	the
emission	 of	 light,	 can	 occur	 spontaneously	 or	 under	 the	 influence	 of	 external	 radiation.
Unlike	 photons	 of	 spontaneous	 radiation	 that	 are	 emitted	 in	 random	directions,	 photons
generated	by	stimulated	emission	are	identical,	that	is,	they	have	the	same	frequency	and
travel	in	the	same	direction	as	the	original	photon.

In	order	to	have	transitions	with	the	radiation	of	energy,	it	is	necessary	to	create	a	high
concentration	of	excited	atoms	or	molecules	(i.e.,	to	create	population	inversion).	As	was
shown	earlier,	this	should	lead	to	the	amplification	of	light	traveling	in	the	medium.	The
process	of	creating	population	inversion	of	levels	is	called	pumping.	There	is	a	variety	of
pumping	methods	that	depend	on	the	laser	type.	The	main	task	of	the	pumping	process	can
be	illustrated	in	the	example	of	a	three-level	laser	(Figure	12.7).

The	lowest	 laser	 level	with	energy	E1	 is	 the	ground	energy	level	of	 the	system	that	 is
originally	populated	by	all	atoms	of	 the	amplifying	medium.	Pumping	excites	 the	atoms
and	thus	promotes	a	fraction	of	a	total	number	of	atoms	from	the	ground	level	to	the	level
with	energy	E3.	The	 atoms	occupying	 this	 level	 can	 return	 to	 the	ground	 level	with	 the
emission	of	 a	photon	or	go	 to	 the	upper	 laser	 level	with	 energy	E2.	 In	 order	 to	 provide
accumulation	of	excited	atoms	at	this	level,	it	is	necessary	to	have	a	rapid	transition	from
the	level	E3	to	the	level	E2.	The	rate	of	this	transition	should	exceed	the	decay	rate	of	the
upper	 laser	 level	 E2.	 Thus,	 the	 created	 inverse	 population	 provides	 the	 necessary
conditions	for	the	amplification	of	radiation.

Since	only	photons,	which	propagate	parallel	to	the	resonator	axis,	participate	in	lasing,
the	 efficiency	 of	 a	 laser	 does	 not	 usually	 exceed	 1%.	 In	 certain	 cases,	 due	 to	 several
improvements,	the	efficiency	of	lasers	can	be	increased	to	30%.

The	 pumping	 system	 is	 an	 external	 source	 of	 energy,	which	 excites	 the	 atoms	 of	 the
amplifying	medium	into	an	excited	state.	In	gas	lasers,	pumping	is	carried	out	usually	by
an	electric	discharge,	in	solid-state	lasers	by	a	flash	lamp,	in	liquid	lasers	by	a	laser	light
or	 flash	 lamp,	 and	 in	 semiconductor	 lasers	 by	 an	 electric	 current.	 The	 pumping	 system
creates	 in	the	amplifying	medium	population	inversion.	Almost	 immediately,	 the	excited
atoms	of	the	medium	begin	to	spontaneously	emit	photons	in	random	directions.	Photons,
emitted	 at	 an	 angle	 to	 the	 axis	 of	 the	 resonator,	 generate	 short	 cascades	 of	 stimulated
radiation,	 which	 quickly	 leaves	 the	 medium.	 The	 photons,	 emitted	 along	 the	 resonator
axis,	 are	 reflected	 by	 mirrors	 and	 repeatedly	 pass	 through	 the	 amplifying	 medium,



inducing	stimulated	radiation.	Generation	of	 laser	 light	starts	when	 the	 increase	 in	wave
energy	due	to	its	amplification	under	each	passage	of	the	resonator	exceeds	the	losses.	The
latter	 consists	 of	 internal	 losses	 (absorption	 and	 scattering	 of	 light	 in	 the	 amplifying
medium,	 in	 resonator	 mirrors,	 and	 in	 other	 elements)	 and	 energy	 that	 exits	 the	 cavity
through	the	output	mirror.

FIGURE	12.7	The	scheme	of	a	three-level	laser.

Exercise	12.4
A	spherical	laser	resonator	consists	of	two	spherical	mirrors	with	radii	R1	and	R2,	which
are	 situated	 across	 each	 other	 and	whose	 optical	 axis	 goes	 through	 the	 vertices	 of	 both
mirrors.	The	distance	between	vertices	is	equal	to	L.	Find	the	condition	of	stability	of	such
resonator.

Solution.	Whether	the	resonator	is	stable	or	not	depends	on	whether	the	light	ray,	which
propagates	near	the	optical	axis,	stays	inside	the	resonator	or	will	after	several	reflections
from	the	mirrors	escape	outside	of	the	mirrors’	limits.	This	condition	defines	if	the	lasing
device	will	generate	radiation	or	not.	Using	the	three	parameters	R1,	R2,	and	L,	we	must
find	if	the	resonator	is	stable	or	not.

If	there	are	two	points	on	the	axis	of	the	laser	resonator	such	that	the	rays	coming	from
one	point	(let	us	denote	it	as	point	1)	after	 their	reflection	from	any	of	these	mirrors	are
collected	 in	a	different	point	(let	us	denote	 it	as	point	2),	 then	we	have	instability	 in	 the
operation	of	laser	resonator.	Let	us	assume	that	the	distances	of	these	two	points	from	the
vertex	of	the	left	mirror	are	equal	to	 f1	and	f2	and	 the	distances	of	 these	points	 from	the
vertex	of	the	right	mirror	are	equal	to	L	–	f1	and	L	–	f2,	correspondently	(see	Figure	12.8).
For	each	of	these	mirrors,	we	can	write	the	equation	for	a	spherical	mirror:

1f1+1f2=2R1,   1L−f1+1L−f2=2R2.

If	 this	 system	of	equations	has	solutions	 for	 f1	and	 f2,	 then	 such	points	do	exist	 and	 the
resonator	will	 be	unstable.	 If	 this	 system	of	 equations	does	not	 have	 solutions,	 then	 the
laser	 resonator	 is	 stable.	 Let	 us	 transform	 this	 system	 of	 equations	 to	 eliminate	 the
denominators:

R1(f1+f2)−2f1f2=0,(2L−R2)(f1+f2)−2f1f2=2L(L−R2).

This	is	the	system	of	two	linear	equations	with	two	unknowns	f1	+	f2	and	f1f2,	which	can
be	easily	solved.	As	a	result,	we	get

f1+f2=2L(L−R2)2L−R1−R2,   f1f2=R1L(L−R2)2L−R2−R2.

The	 two	 roots	 x1	 and	 x2	 of	 equation	 x2+px+q=0	 satisfy	 the	 following	 conditions:



x1⋅x2=q,x1+x2=−p.	By	comparing	these	relationships	with	the	solution	mentioned	earlier
for	f1	and	f2,	we	conclude	that	f1	and	f2	are	the	roots	of	quadratic	equation.	Therefore,	the
condition	 that	 quadratic	 equation	 does	 not	 have	 roots	 is	 that	 the	 discriminant	 of	 the
equation	p2	–	4q	must	be	negative.	The	discriminant	can	be	expressed	through	f1	+	f2	and
f1f2	as	follows:

FIGURE	12.8	Schematics	of	the	rays	in	spherical	resonator	when	it	is	unstable:	the	rays
come	out	from	point	f1	(or	f2)	and	after	reflection	they	cross	at	f2	(or	f1).

FIGURE	12.9	The	regions	of	stability	and	instability	of	the	laser	resonator.

D=(f1+f2)2−4f1f2=4L(L−R1)(L−R2)(L−R1−R2)(2L−R1−R2)2.

Thus,	 the	 points	 f1	 and	 f2	 do	 exist	 if	D	 >	 0	 and	 they	 do	 not	 exist	 if	D	 <	 0.	 From	 the
expression	 for	 the	 discriminant,	 it	 follows	 that	 its	 sign	 coincides	 with	 the	 sign	 of
numerator.	This	 result	 allows	 us	 to	 formulate	 the	 following	 criterion	 for	 laser	 resonator
stability:

•	Resonator	is	stable	if	(L−R1)(L−R2)(L−R1−R2)<0
•	Resonator	is	unstable	if	(L−R1)(L−R2)(L−R1−R2)>0.

In	 order	 to	 make	 this	 result	 more	 transparent,	 let	 us	 show	 regions	 of	 stability	 and
instability	(that	is	regions	where	discriminant	is	positive	and	negative)	as	a	function	of	L
assuming	that	R1	≤	R2.	We	see	that	 there	are	 two	regions	of	stability	and	two	regions	of
instability	 and	 they	 are	 located	 as	 shown	 in	 Figure	 12.9.	 In	 the	 case	 of	 symmetric
resonator,	when	R1	=	R2	=	R,	the	criteria	for	stability	and	instability	take	the	form	L	<	2R
and	L	>	2R,	respectively.

12.5		MAIN	FEATURES	OF	THE	DIFFERENT	TYPES	OF
LASERS

Solid-state	lasers.	The	working	substances	of	these	lasers	are	crystals	or	glasses	activated
by	impurity	ions.	Widely	used	solid-state	lasers	are	based	on	ruby	crystal	aluminum	oxide
(Al2O3),	in	which	about	0.05%	of	the	aluminum	atoms	are	replaced	with	chromium	ions
Cr3+,	or	on	the	garnet	YAG	(Y3Al5O12),	doped	with	neodymium	(Nd3+),	terbium	(Tb3+),
ytterbium	 (Yb3+),	 etc.	 More	 than	 250	 crystals	 and	 about	 20	 glasses	 emit	 stimulated
radiation	 of	 various	 frequencies.	 Flash	 lamps	 are	 used	 for	 pumping.	 Solid-state	 lasers
usually	work	in	pulsed	mode	with	a	repetition	rate	of	up	to	tens	of	megahertz.	The	energy
of	a	single	pulse	can	reach	a	few	joules.

Gas	lasers.	In	gases,	the	excited	neutral	atoms	and	molecules	weakly	ionized	by	electric
discharge	plasma	serve	as	the	sources	of	stimulated	radiation.	The	number	of	electron-ion



pairs	appearing	in	the	discharge	column	exactly	compensates	the	loss	of	charged	particles
on	the	walls	of	a	discharge	tube.	Therefore,	the	quantity	of	excited	atoms	is	constant	and
their	 radiation	 is,	 as	 a	 rule,	 continuous.	 Since	 a	 gas	medium	 is	 very	 uniform,	 the	 light
beam	is	scattered	in	it	weakly	and	the	output	beam	diverges	very	little.	Radiation	power	of
gas	 lasers,	 depending	 on	 the	 type	 and	 structure,	 can	 vary	 from	 milliwatts	 to	 tens	 of
kilowatts.	This	laser	family	has	the	largest	number	of	lasers.	They	are	as	follows:

•	Lasers	based	on	neutral	atoms.	The	 lasers	on	a	mixture	of	helium	and	neon
(ratio	10:1)	are	 the	most	widespread.	They	provide	continuous	radiation	 in	 the
red	region	of	the	spectrum	(λ	=	632.8	nm).
•	Ion	lasers.	The	population	inversion	is	created	by	electric	discharge.	Powerful
radiation	(tens	of	watts)	is	generated	by	ions	Ar2+	(λ	=	488	nm;	514.5	nm,	in	the
blue–green	range),	Kr2+	(λ	=	561.2	nm;	647.l	nm,	yellow–red	range),	Kr3+,	and
Ne2+	(UV	range).
•	Molecular	lasers.	They	have	high	efficiency	(up	to	25%)	and	power	(to	tens	of
kW	in	the	continuous	mode	and	tens	of	kJ	in	pulse);	they	emit	in	the	IR	range.
Population	inversion	is	created	by	UV	radiation	or	an	electron	beam.	The	lasers
based	 on	CO2,	 H2O,	 and	 N2	 are	 most	 widespread.	 Lasers	 based	 on	 vapor	 of
dimer	sulfur	S2	possess	the	following	unique	feature:	due	to	the	large	number	of
metastable	 levels	 in	 this	 molecule,	 the	 laser	 emits	 simultaneously	 at	 15
wavelengths	 in	 the	 visible	 range.	Therefore,	 the	 laser	 beam	on	 the	S2	 appears
white.	 The	most	 powerful	CO2	 lasers	 operate	 in	 the	 IR	 range	 (λ	 =	 10.6	 μm).
They	generate	radiation	with	power	up	to	hundreds	of	kW	in	continuous	mode
emission.
•	Metal	 vapor	 lasers.	 Ions	 and	 atoms	 of	 27	 metals	 possess	 the	 structures	 at
energy	levels,	which	are	achieving	population	inversion.	Cu	vapor	lasers	emit	at
wavelengths	 of	 510.4	 nm	 (green	 light)	 and	 578.2	 nm	 (yellow	 light)	 with	 an
average	 power	 of	 more	 than	 40	 W.	 Metal	 vapor	 lasers	 have	 very	 high
amplification	coefficient.
•	 Excimer	 lasers.	 They	 operate	 based	 on	 molecules	 in	 their	 excited	 state.
Excimers	 are	 shortlived	 compounds	 of	 noble	 gases,	 with	 halogens	 or	 with
oxygen	(e.g.,	Ar2,	KrCl,	XeO).	These	lasers	have	pulsed	emission	in	the	visible
or	UV	spectral	range	with	repetition	rates	up	to	104	Hz	and	an	average	power	of
several	tens	of	watts.

Currently,	one	of	the	most	common	gas	lasers	is	laser	using	a	mixture	of	helium	and	neon.
The	total	pressure	in	the	mixture	is	about	102	Pa	with	a	ratio	of	He	and	Ne	components	of
about	10:1.	The	amplifying	gas	is	neon,	wherein	in	the	continuous	mode	lasing	occurs	at	a
wavelength	of	632.8	nm	(bright	red).	Helium—the	buffer	gas—is	involved	in	the	creation
of	a	population	inversion	of	one	of	the	upper	levels	of	neon.	Emission	of	He–Ne	laser	is
exceptionally	unrivaled	monochromatic.	Calculations	show	that	 the	width	of	 the	spectral
lines	generated	by	He–Ne	laser	is	Δf	≈	5	×	10−4	Hz.	This	is	a	very	small	quantity.	In	this
case,	 the	 coherence	 time	 of	 the	 radiation	 is	 of	 the	 order	 τ	 ≈	 1/Δf	 ≈	 2	 ×	 103	 s	 and	 the
coherence	length	of	cτ	≈	6	×	1011	m,	that	is,	greater	than	the	diameter	of	Earth’s	orbit.



In	practice,	many	technical	reasons	prevent	the	achievement	of	such	a	narrow	spectral
line	 of	 He–Ne	 laser.	 By	 careful	 stabilization	 of	 all	 parameters	 of	 the	 laser	 system,	 the
relative	width	Δf/f	 of	 the	order	of	10−14–10−15	 can	 be	 achieved,	which	 is	 3–4	 orders	 of
magnitude	 larger	 than	 the	 theoretical	 limit.	 But	 realistically	 achieved	 radiation
monochromaticity	of	He–Ne	 laser	makes	 this	device	absolutely	 indispensable	 in	solving
many	scientific	and	engineering	problems.	Figure	12.10	shows	a	simplified	energy	 level
diagram	 of	 helium	 and	 neon	 and	 the	mechanism	 of	 a	 population	 inversion	 of	 the	 laser
transition.	 The	 arrows	 indicate	 the	 transitions,	 which	 can	 be	 generated.	 Bold	 lines
represent	 groups	 of	 closely	 spaced	 levels.	 Generation	 corresponds	 to	 the	 transition
between	the	individual	levels,	not	between	groups.	For	example,	the	lasing	wavelength	λ	=
632.8	nm	corresponds	to	the	transition	between	levels	3S2	→	2P4.

FIGURE	 12.10	 A	 diagram	 showing	 that	 light	 generation	 occurs	 for	 three	 possible
transitions.

As	 can	 be	 seen	 from	 the	 diagram,	 the	 generation	 is	 possible	 for	 three	 possible
transitions.	 Maximum	 power	 (hundreds	 of	 milliwatts)	 is	 achieved	 in	 the	 generation	 of
wavelength	λ	=	3.39	μm	(transition	3S	→	3P),	but	less	power	in	the	transition	2S	→	2P	(λ
=	1.15	μm).	The	lowest	power	is	generated	at	the	transition	3S	^	2P	with	the	emission	of
the	red	line	λ	=	0.63	μm.

Dye	 lasers.	 The	 amplifying	 media	 are	 solutions	 of	 organic	 compounds,	 complex
compounds	 of	 rare	 earth	 elements	 (Nd,	 Eu),	 and	 inorganic	 liquids.	 These	 materials
combine	 to	 some	 extent	 the	 advantages	 of	 solid	 media	 (high	 density)	 and	 gases	 (high
homogeneity).	Population	 inversion	 is	 created	by	 the	 irradiation	of	a	cell	 filled	with	 the
dye	by	a	laser	or	a	gas-discharge	lamp.	Their	emission	power	can	reach	tens	of	watts;	the
wavelength	range	can	change	ranging	from	322	to	1260	nm	by	simply	replacing	the	dye
solution.	Dye	 lasers	 can	 generate	 both	 continuous	 emission	 and	 sequences	 of	 ultrashort
impulses	with	duration	of	up	to	2	×	10−13	s.

Semiconductor	lasers.	The	amplifying	media	of	these	lasers	are	semiconductor	crystals
GaAs,	InSb,	PbS,	etc.	In	contrast	to	other	amplifying	media,	in	which	the	energy	levels	are
discrete	 and	 therefore	 generate	 monochromatic	 radiation,	 semiconductors	 have	 rather
broad	energy	bands.	Therefore,	the	emitted	radiation	has	a	wide	wavelength	range	and	low
coherence.	 Electrons	 and	 holes	 move	 in	 the	 amplifying	 medium	 and	 recombine	 in	 the
vicinity	 of	 a	 p–n	 junction.	 In	 this	 case,	 electrical	 energy	 is	 directly	 transformed	 into



radiation.

Semiconductor	lasers	have	very	high	efficiency	(up	to	50%,	and	even	about	100%	for
some	models)	and	large	amplification	coefficient.	Thanks	to	it,	the	size	of	the	amplifying
element	 is	 small	 (less	 than	 1	mm).	A	wide	 range	 of	 semiconductor	materials	 allow	 the
generation	of	radiation	in	the	0.	3–40	μm	wavelength	range.	Lasers	of	different	types	work
both	in	the	continuous	mode	and	in	the	pulsed	mode,	with	powers	ranging	from	a	fraction
of	1	mW	to	1	MW	per	pulse.	Semiconductor	lasers	are	used	as	sights	of	portable	weapons
and	 pointers,	 in	 CD	 players,	 and	 as	 powerful	 light	 sources	 in	 beacons.	 Gas	 lasers	 are
applied	 in	 range	 finders	 and	 theodolites,	 as	 frequency	 and	 time	 standards	 in	metrology,
and	 in	 recording	 holograms.	 Dye	 lasers	 are	 used	 for	 atmospheric	measurements.	 High-
power	 metal	 vapor	 lasers	 are	 used	 for	 cutting,	 welding,	 and	 processing	 of	 materials.
Excimer	 lasers	are	applied	 in	medicine	 for	 therapeutic	procedures	and	 in	 surgery.	High-
power	 lasers	 are	used	 in	 thermonuclear	 fusion,	 in	 separation	of	 isotopes,	 and	 in	various
physics	and	chemistry	experiments.

Exercise	12.5
How	will	the	frequency	of	the	longitudinal	mode	change,	if	the	length	of	the	resonator	L	is
increased	by	one	wavelength	λ?

Solution.	An	integer	number	of	half	waves	for	the	longitudinal	modes	can	fit	the	length	of
the	original	resonator,	that	is,

L=mλ2.

The	frequency	of	this	mode	is

f1=cλ=mc2L.

If	we	increase	the	resonator	length	by	one	wavelength,	we	have

L+λ=mλ2,   λ=2Lm−2.

The	frequency	of	the	new	longitudinal	mode	is

f2=cλ=c(m−2)2L.

The	change	of	the	frequency	of	the	longitudinal	mode	is	equal	to

Δf=f2−f1=−cL

PROBLEMS
12.1	A	dilute	electrically	neutral	plasma	consists	of	electrons	and	positively
singly	ionized	helium	atoms,	whose	masses	are	m	=	9.1	×	10−31	kg	and	M	=
4	 ×	 1.67	 ×	 10−27	 kg,	 respectively.	 The	 electron	 and	 helium	 ion
concentration	 is	Ne	 =	Ni	 =	N	 =	 1014	m−3.	 Find	 the	 phase	 velocity	 of	 an
electromagnetic	wave	 that	 propagates	 in	 this	 plasma	 at	 frequencies	 ω1	 =
1013	 s−1	and	ω2	=	1014	 s−1.	 (Answer:	At	ωl	 =	 1013	 s−1	 the	 phase	 velocity
value	is	imaginary;	at	ω2	=	1014	s−1	we	get	vph	=	3.63	×	108	m/s.)
12.2	 A	 plane	 electromagnetic	 wave	 of	 frequency	 f	 =	 l.00	 GHz	 is
propagating	in	a	gaseous	plasma.	Find	the	dielectric	permittivity	ε	and	the



conductivity	σ	of	the	plasma,	if	the	complex	wave	number	in	the	medium	is
equal	to	k	=	(15	–	3i)	m−1	(Answer:	ε	≈	0.49ε0,	σ	=	1.13	×	10−2	(Ω	⋅	m)1.)
12.3	 Find	 the	 concentration	 of	 free	 electrons	 in	 the	 ionosphere,	 if
electromagnetic	waves	with	frequencies	below	0.50	GHz	cannot	propagate
through	 the	 plasma	 as	 waves	 but	 instead	 are	 reflected	 by	 the	 plasma.
(Answer:	N	≥	3.1	×	1015	m−3.)
12.4	 In	 a	 p-type	 silicon	 sample,	 we	 have	 heavy	 and	 light	 holes.	 The
concentration	and	 the	effective	masses	of	heavy	holes	 are	N1	 =	 1023	m−3

and	 mp1*=0.5m,	 and	 for	 the	 light	 holes,	 N2	 =	 1.7	 ×	 1022	 m−3	 and
mp2*=0.2m,	 where	 m	 is	 the	 free	 electron	 mass.	 Damping	 coefficients
related	to	collisions	of	holes	with	other	particles	are	γ1	=	9.2	×	1012	s−1	for
heavy	holes	and	γ2	=	2.6	×	1013	s−1	for	light	holes	(compare	with	Equations
12.4	and	12.7).	Find	the	conductivity	of	the	silicon	and	the	contribution	to
the	 dielectric	 constant	 of	 the	 holes	 for	 an	 electromagnetic	 wave	 with
frequency	 f=3THz.(Part	 of	 the answer;κ
″=2ωp12γ1ω(ω2+4γ12)+2ωp22γ2ω(ω2+4γ22).)
12.5	An	electromagnetic	wave	propagates	 in	 a	gaseous	plasma	 that	has	 a
plasma	frequency	of	ωp	=	5.00	×	108	s−1	and	a	damping	parameter	of	γ	=
108	 s−1.	Find	 the	frequency	of	 the	wave	for	which	 the	conduction	current
density	becomes	equal	to	the	density	of	the	displacement	current.	(Answer:
ω	=	5.50	×	108	s−1.)
12.6	A	monochromatic	plane	wave	with	 intensity	 I0	 is	 incident	 along	 the
normal	onto	an	inhomogeneously	absorbing	parallel	plate	with	thickness	L.
The	absorption	coefficient	of	the	material	of	the	plate	changes	with	position
inside	 the	 plate	 in	 accordance	 to	 the	 equation	 α(z)=α0+γz2.	 Find	 the
intensity	of	the	wave	after	it	emerges	from	the	plate	(reflection	of	the	wave
from	 the	 boundary	 surfaces	 of	 the	 plate	 may	 be	 neglected).	 (Answer:
I(L)=I0 exp[	−(α0L+γL3/3)	].)
12.7	A	monochromatic	plane	wave	with	 intensity	 I0	 is	 incident	 along	 the
normal	onto	an	inhomogeneously	absorbing	parallel	plate	with	thickness	L.
The	absorption	coefficient	of	the	material	of	the	plate	changes	with	position
inside	the	plate	 in	accordance	with	the	equation	α(z)=α0+γz2.	The	energy
reflection	coefficients	of	the	wave	from	the	input	and	output	surfaces	are	R1
and	R2.	Find	the	intensity	of	 the	wave	after	 it	emerges	from	the	plate	and
the	 transmission	 coefficient	 T	 of	 the	 plate	 (secondary	 reflections	 can	 be
neglected).	 (Answer:	 It=(1−R1)(1−R2)I0 exp[	 −(α0L+γL3/3)	 ],T=(1−R1)
(1−R2)exp[	−(α0L+γL3/3)	].)
12.8	 A	 point	 monochromatic	 source	 whose	 full	 luminous	 flux	 (power
transferred	by	radiation	per	unit	area)	is	equal	to	Φ0	is	located	at	the	center
of	a	spherical	shell	of	gaseous	plasma	with	inner	and	outer	radii	pj	and	ρ2,
plasma	 frequency	 ωρ,	 and	 damping	 parameter	 γ.	 Find	 the	 frequency
dependence	 of	 the	 ratio	 of	 the	 intensity	 of	 radiation	 that	 enters	 and	 the
intensity	of	the	transmitted	radiation	(reflections	at	the	boundary	layers	can



be	neglected).	(Answer:	I1I2=p22p12exp[	k0κ(ω)(p2−p1)	].)
12.9	 Derive	 expressions	 for	 the	 phase	 and	 group	 velocity	 for	 a	 medium
with	 one	 type	 of	 oscillators	 with	 the	 intrinsic	 frequency	 ω0	 and	 plasma
frequency	 ωp.	 Absorption	 can	 be	 neglected.	 (Answer:
vph=c1−ωp2ω02−ω2,vgr=cn(ω02−ω2)2n2(ω02−ω2)2+ω2ωp2.)
12.10	 In	a	 transparent	medium,	 the	group	and	phase	velocities	are	related
as	follows:	vphvgr	=	c2,	where	c	is	the	speed	of	light	in	a	vacuum.	Find	the
dependence	 on	 frequency	 of	 the	 wave’s	 refractive	 index	 in	 the	 medium.
(Answer:	n(ω)=1+C/ω2,	where	C	is	a	constant	of	integration.)



13
Electromagnetic	Waves	in	Media	with
Material	Parameters	That	Are	Complex
Numbers

As	we	 already	 discussed,	 electromagnetic	 waves	 propagate	 without	 attenuation	 only	 in
vacuum	or	 in	a	nonabsorbing	medium.	On	the	other	hand,	all	 real	media	 to	some	extent
absorb	 some	 of	 the	 energy	 of	 the	 propagating	 electromagnetic	 wave.	 The	 absorption
depends	 strongly	 on	 the	wave	 frequency.	 For	 some	 ranges	 of	 the	 electromagnetic	wave
spectrum,	 the	 absorption	 can	 be	 so	 weak	 that	 it	 can	 be	 neglected;	 for	 other	 ranges,
absorption	 is	 important.	 Consider	 the	 features	 of	 the	 propagation	 of	 a	 plane
monochromatic	wave	in	a	medium	with	absorption.	Such	a	medium	is	generally	described
by	a	 complex	dielectric	permittivity	 and	magnetic	permeability.	The	nature	of	 the	wave
process	in	a	medium	significantly	depends	on	the	signs	of	the	real	and	imaginary	parts	of
these	 parameters.	 In	 this	 chapter,	we	will	 consider	 the	 features	 of	wave	 propagation	 in
media	for	which	one	of	these	complex	parameters	or	both	(dielectric	and	magnetic)	have	a
nonzero	imaginary	part.

13.1		COMPLEX	PERMITTIVITY,	PERMEABILITY,
AND	IMPEDANCE	OF	A	MEDIUM

Let	us	write	down	expressions	 for	 complex	 relative	dielectric	permittivity	and	magnetic
permeability.	Generally,	these	expressions	can	be	represented	in	several	forms:

κ˜=κ′−iκ″=|κ˜|exp(−iδκ)=|κ˜|cosδκ−i|κ˜|sinδκ,κ˜m=κm′−iκm″=|κ˜m|exp(−iδκm)=|
κ˜m|cosδκm−i|κ˜m|sinδκm, (13.1)

where	κ′,	κ′m	and	κ″,	κ″m	are	the	real	and	imaginary	parts	of	the	material	parameters,

|κ˜|=(κ′)2+(κ″)2,   |κ˜m|=(κm′)2+(κm″)2, (13.2)

and	δκ,	δκm	 are	 their	arguments	 (phases).	Phase	angle	δκ	 is	 called	 the	angle	of	dielectric
losses.	Analogously,	we	refer	to	δκm	as	the	angle	of	magnetic	losses.	In	reference	books,
the	magnitudes	of	tangents	of	the	corresponding	losses,	that	is,	tan	δκ=κ″/κ′	and	δκm=κm
″/κm′,	are	often	listed.

The	appearance	of	Maxwell’s	equations	and	 their	 solutions	does	not	change	when	we
take	into	account	the	fact	that	parameters	κ	and	κm	are	complex	numbers.	However,	now
in	 the	 analysis	 of	 the	 general	 dispersion	 and	 field	 relations,	 it	 is	 necessary	 to	 take	 into
account	that	the	refractive	index	ñ	(to	emphasize	the	case	of	complex	refractive	index,	we
denote	it	by	ñ),	see	also	Equation	12.8,	the	wave	propagation	vector	k,	and	the	impedance
(wave	resistance)	Z	become	complex:



n˜=κ˜κ˜m=n−iκ,k=k0n˜=k′−ik″:   k′=k0n,   k″=k0κ, (13.3)

Z=μ0κ˜mε0κ˜=Z′−iZ″=|	Z	|exp(−iζ), (13.4)

where

|Z|	is	the	modulus
ζ	is	the	phase	of	the	complex	impedance
we	denote	by	n	the	real	part	and	introduce	κ	for	the	imaginary	part	of	ñ	(see	Equation
12.8)

In	 an	 infinite	 medium	 with	 complex	 values	 for	 k	 and	 Z,	 the	 expressions	 for	 the
components	of	 the	wave	 field	of	a	plane	 linearly	polarized	wave,	propagating	along	 the
positive	z-axis,	take	the	form

Hy(z,t)=H(z)exp[	i(ωt−k′z+α)	],Ex(z,t)=E(z)exp[	i(ωt−k′z+α−ζ)	], (13.5)

where

H(z)	and	E(z)	are	the	wave	amplitudes
α	is	the	initial	phase	of	the	magnetic	field
ζ	is	the	phase	of	the	complex	impedance

The	analysis	of	expression	(13.5)	allows	us	to	reach	the	following	conclusions:

1.	For	a	wave	described	by	Equation	13.5,	the	role	of	the	wave	number	is	played
by	 the	 real	 part	 of	 the	 complex	 wave	 number,	 which	 is	 related	 to	 the	 phase
velocity	and	the	wavelength	in	a	medium,	that	is,

k′=ωvph=2πλ. (13.6)

2.	 The	 amplitudes	 of	 the	 magnetic	 and	 electric	 fields	 of	 a	 wave	 depend
exponentially	on	z:

H(z)=H0 exp(−k″z),E(z)=|	Z	|H(z)=|	Z	|H0 exp(−k″z). (13.7)

Here,	H0	=	H(z	=	0).	For	k″	>	0,	the	amplitude	decreases	in	the	direction	of	the
z-axis	(the	wave	is	attenuated);	for	k″	<	0,	the	amplitude	increases	(the	wave	is
amplified).	Attenuation	of	a	wave	is	characteristic	of	media	with	losses,	and	it	is
caused	 by	 the	 transformation	 of	 the	 wave	 energy	 to	 other	 forms	 of	 energy
(usually	internal	energy	of	the	medium).	Such	a	medium	is	called	absorbing	or
passive.	Amplification	of	the	wave	is	observed	in	lasers;	this	type	of	medium	is
called	amplifying	or	active.	The	imaginary	part	of	a	wave	number,	k″,	is	called
the	attenuation	(amplification)	coefficient.	Its	value	is	inversely	proportional	to
the	distance	 ze	 at	which	 the	wave	 amplitude	 decreases	 (increases)	 by	 a	 factor
equal	to	e,	that	is,	k″=1/ze.	Note,	often	in	the	literature	the	letter	μ	instead	of	k″
is	used	to	denote	the	attenuation	coefficient.



3.	The	ratio	of	the	amplitudes	of	the	electric	and	magnetic	fields	is	equal	at	each
point	to	the	modulus	of	the	complex	impedance	of	the	medium:

E(z)H(z)=|	Z	|=(Z′)2+(Z″)2. (13.8)

4.	 If	 the	 imaginary	part	of	 the	 impedance	Z″	 is	not	zero,	 there	 is	a	phase	shift
between	 the	 oscillations	 of	 the	 electric	 and	 magnetic	 field	 vectors,	 which	 is
equal	to	the	phase	of	the	impedance	ζ=arctan(Z″/Z′).	Its	value	is	important	as	it
determines	the	processes	of	energy	transfer	by	an	electromagnetic	wave.

Next,	we	will	consider	only	passive	media	in	which	there	is	attenuation	of	electromagnetic
waves	(in	this	case,	it	is	not	necessarily	due	to	losses).	As	will	be	shown	in	the	following
text,	 for	 passive	 media,	 the	 angles	 of	 losses	 δκ,	 δκm	 must	 be	 positive	 to	 represent	 the
complex	 values	 κ˜	 and	 κ˜m	 with	 points	 in	 the	 complex	 plane.	 In	 Figure	 13.1,	 the
coordinate	 plane	 (κ′,	 κ″)	 is	 shown.	 Each	 point	 corresponds	 to	 a	 specific	 value	 of	 the
complex	 dielectric	 permittivity	 κ˜.	 This	 value	 can	 also	 be	 presented	 by	 a	 vector,	which
connects	an	origin	of	coordinates	to	the	corresponding	point	of	the	(κ′,	κ″)	plane.

The	modulus	of	this	vector	is	equal	to	|	κ˜	|	and	the	angle,	which	this	vector	forms	with
the	 horizontal	 axis,	 is	 equal	 to	 the	 loss	 angle	 δκ.	 In	 this	 figure,	 the	 upper	 half	 plane
corresponds	to	passive	media	(κ″	>	0,	0	<	δκ	<	π)	while	the	lower	half	plane	(κ″	<	0,	−π	<
δκ	<	0)	to	active	media.

Transparent	media	without	 losses	 (in	 this	case—dielectrics)	correspond	 to	points	with
δκ	 =	 0,	 π	 (i.e.,	 κ″	 =	 0).	 The	 coordinate	 plane	 for	 the	 relative	magnetic	 permeability	 is
analogous	 to	 the	 coordinate	plane	of	 the	 relative	dielectric	permittivity	 shown	 in	Figure
13.1.

Exercise	13.1
Find	the	real	and	imaginary	parts	of	the	impedance	of	a	medium	with	complex	dielectric
permittivity	and	magnetic	permeability.

Solution.	Using	the	definition	of	impedance,	we	get

Z=Z′−iZ″=μ0κ˜mε0κ˜,

where	κ˜=κ′−iκ″ and κ˜m=κ′m−iκ″m.	If	we	square	the	expression	for	impedance,	we	have

Z2=(Z′)2−(Z″)2−2iZ′Z″,Z2=μ0κ˜mε0κ˜=μ0ε0.κ′m−iκ″mκ′−iκ″=μ0ε0.(κ′m−iκ″m)(κ′m+iκ
″m)(κ′)2+(κ″)2=μ0ε0.κ′κ′m+κ″κ″m−i(κ′κ″m−κ″κ′m)(κ′)2+(κ″)2.



FIGURE	13.1	Representation	of	the	complex	permittivity	on	the	coordinate	plane	(κ′,	κ″).

Thus,

(Z′)2−(Z″)2=μ0ε0.κ′κ′m+κ″κ″m(κ′)2+(κ″)2=a,   2Z′Z″=μ0ε0.κ′κ′m−κ″κ″m(κ′)2+(κ″)2=b.

From	 the	 second	 equation,	 we	 get	 Z″	 =	 b/2Z′,	 which	 we	 will	 substitute	 into	 the	 first
equation.	As	a	result,	we	get	the	equation	for	Z′	and	its	solution:

(Z′)4−a(Z′)2−b2=0,   (Z′)2=12(a2+b2+a).

In	a	similar	fashion,	we	get	the	expression	for	(Z″)2:

(Z″)2=12(a2+b2−a).

After	taking	the	square	root	of	these	relationships,	we	get	the	following	expressions	for	the
real	and	imaginary	parts	of	impedance:

Z′Z″	}=12(a2+b2±a)1/2=μ02ε0((κ′κ′m+κ″κ″m)2+(κ′κ″m−κ″κ′m)2±(κ′κ′m+κ″κ″m))1/2(κ
′)2+(κ″)2.

13.2		ENERGY	FLOW	IN	A	MEDIUM	WITH	COMPLEX
MATERIAL	PARAMETERS

1.	Here	we	discuss	the	energy	(or	intensity)	flow	of	an	electromagnetic	wave	in	a	medium
with	 complex	 permittivity	 κ	 and	 permeability	 κm.	We	 assume	 that	 the	wave	 is	 linearly
polarized	along	the	x-axis	and	that	it	propagates	along	the	positive	direction	of	the	z-axis.
We	determine	the	average	value	of	the	energy	flux	over	one	period:

〈	Sz	〉=12Re(ExHy*), (13.9)

where	the	components	of	the	wave	field	Hy	and	Ex	are	given	by

Hy=H0 exp(−k″z)exp[	i(ωt−k′z+α)	],Ex=|	Z	|H0 exp(−k″z)exp[	i(ωt−k′z+α-ζ)	], (13.10)

where

H0	 and	 α	 are	 the	 amplitude	 and	 initial	 phase	 of	 the	 magnetic	 field	 of	 the	 wave,
respectively
ζ	is	the	phase	of	the	complex	impedance

We	write	 the	complex	conjugate	of	 the	expression	 for	 the	y-component	of	 the	magnetic
field:

Hy*=H0 exp(−k″z)exp[	−i(ωt−k′z+α)	], (13.11)

and	the	product	ExHy*	is

ExHy*=|	Z	|H02e−2k′ze−iζ=|	Z	|H02e−2k″z(cosζ-i sinζ).

After	substituting	this	relation	into	Equation	13.9,	we	obtain	the	following	expression	for
the	energy	flux	of	the	electromagnetic	wave	along	the	z-axis:



〈	Sz	〉=12Z′H02exp(−2k″z)=12|	Z	|H02e−2k″zcosζ. (13.12)

From	 this	 expression,	 it	 follows	 that	 the	 energy	 flux	 of	 a	 single	 wave	 in	 an	 absorbing
medium	is	proportional	to	the	real	part	of	the	impedance,	ReZ,	and	decays	exponentially
in	 the	 direction	 of	 propagation.	 If	 vectors	E	 and	H	 oscillate	 with	 phase	 shift	 ζ	 =	 ±π/2
(vector	components	of	the	field	in	this	case,	called	reactive),	the	wave	energy	flux	is	zero
and	the	transfer	of	electromagnetic	energy	by	the	wave	in	this	case	is	impossible.

2.	We	now	determine	 the	 total	 energy	 flow	of	 the	 two	counterpropagating	waves	of	 the
same	 frequency	 in	 a	 medium	with	 complex	 κ	 and	 κm.	 Let	 the	 waves	 propagate	 in	 the
positive	and	negative	directions	of	the	z-axis	and	have	the	same	linear	polarization	of	the
electric	field	along	x-axis.	The	total	field	Ex	and	Hy	of	the	two	counterpropagating	waves
is	determined	by	the	expressions

Hy=A1e−k″zei(ωt−k′z+α1)−A2ek″zei(ωt+k′z+α2),Ex=|	Z	|A1e−k″zei(ωt−k
′z+α1−ζ)+|	Z	|A2ek″zei(ωt+k′z+α2−ζ). (13.13)

Let	us	write	the	complex	conjugate	of	the	expression	for	the	y-component	of	the	magnetic
field:

Hy*=A1e−k″ze−i(ωt−k′z+α1)−A2ek″ze−i(ωt+k′z+α2), (13.14)

and	the	product	ExHy*	is

ExHy*=|	Z	|A12e−2k″ze−iζ−|	Z	|A22e2k″ze−iζ+|	Z	|A1A2e−iζei(2k′z+α2−a1)−|
Z	|A1A2e−iζe−i(2k′z+α2−a1). (13.15)

The	last	two	terms	in	this	equation	can	be	combined	into	one	taking	into	account	that

eiφ−e−iφ=2i sinφ.

Then,	Equation	13.15	takes	the	form

ExHy*=|	Z	|A12e−2k″ze−iζ−|	Z	|A22e2k″ze−iζ+2i|	Z	|A1A2e−iζsin(2k
′z+α2−α1). (13.16)

Now,	we	will	find	the	real	part	of	this	expression.	We	take	into	account	that

Re(e−iζ)=cosζ,   |	Z	|cosζ=Z′,Re(e−iζ)=sinζ,   |	Z	|sinζ=Z″.

As	a	 result,	we	find	 that	 the	 total	energy	flux	of	 the	 two	waves	can	be	expressed	as	 the
sum	of	three	terms:

〈	Sz	〉=S1+S2+Sint, (13.17)

where	the	following	notation	is	introduced:

S1=12Z′A12e−2k″z,S2=12Z′A22e−2k″z,Sint=Z′A1A2e−2k″zcos(α2−α1).

The	 first	 two	 terms	 in	Equation	13.17,	S1,	S2,	 have	 opposite	 signs.	 These	 represent	 the



energy	 flow	 of	 each	 of	 the	 two	 counterpropagating	waves.	 If	 there	 are	 losses,	 they	 are
damped	in	the	direction	of	the	propagation	of	each	wave	(decay	constant	is	2k″).	The	third
term,	 Sint,	 is	 the	 interference	 energy	 flux	 of	 the	 counterpropagating	 waves,	 which	 is
proportional	 to	 the	 product	 of	 their	 amplitudes	 (A1A2)	 and	 depends	 on	 the	 difference
between	their	initial	phases	(α2	–	α1).

The	interference	flux	term	is	undamped,	that	is,	it	has	a	harmonic	dependence	on	z.	In
the	particular	case	of	k′	=	0,	the	flux	Sint	is	constant.	One	more	feature	of	the	interference
flow	term	is	that	the	flows	of	individual	waves,	S1	and	S2,	are	proportional	to	the	real	part
of	the	impedance	Z′=|Z|cos ζ,	but	Sint	is	proportional	to	the	imaginary	part	Z″=|Z|sin ζ.

If	the	vectors	E	and	H	of	both	waves	oscillate	with	a	phase	shift	ζ	=	±π/2,	 the	partial
energy	 fluxes	 S1	 and	 S2	 are	 equal	 to	 zero.	 In	 this	 case,	 when	 there	 are	 two
counterpropagating	waves,	transfer	of	electromagnetic	energy	is	only	possible	due	to	the
presence	of	the	interference	flux,	Sint.

3.	 Suppose	 now	 that	 two	 waves	 of	 the	 same	 frequency	 generated	 by	 two	 independent
sources	propagate	in	the	same	direction	along	z-axis.	In	this	case,	the	total	energy	flow	in
the	 direction	 of	 the	 wave	 propagation	 consists	 of	 three	 components	 (analogously	 to
Equation	13.17):

〈	Sz	〉=S1+S2+Sint, (13.18)

where	the	following	notations	are	used:

S1=12Z′A12e−2k″z,S2=12Z′A22e−2k″z,Sint=Z′A1A2e−2k″zcos(α2−α1). 

However,	in	the	case	of	unidirectional	waves,	the	properties	of	the	interference	flux	Sint	do
not	differ	from	those	of	the	fluxes	S1	and	S2:	the	interference	flux	is	proportional	to	a	real
part	of	an	impedance	Z′	and	decreases	exponentially	in	the	direction	of	propagation.

Exercise	13.2
Find	the	dependence	of	the	phase	ζ	of	the	complex	impedance	Z	on	material	parameters	of
the	medium.	What	are	the	conditions	that	material	parameters	must	satisfy	for	ζ	=	π/4?

Solution.	According	to	the	definition	of	medium’s	complex	impedance,

Z=Z′−iZ″=|	Z	|exp(−iζ)=|	Z	|(cosζ−i sinζ).

At	the	same	time,	the	following	relationships	are	valid:

cosζ=Z′|	Z	|,    sinζ=Z″|	Z	|,  tanζ=Z″Z′.

Let	us	substitute	into	the	last	relationship	the	expressions	for	real	and	imaginary	parts	of
impedance:

Z′Z″	}=μ0/2ε0(κ′)2+(κ″)2((κ′κ′m+κ″κ″m)2+(κ′κ″m−κ″κ′m)2±(κ′κ′m+κ″κ″m))1/2.

As	a	result,	we	get	the	following	expression:

tanζ=((κ′κ′m+κ″κ″m)2+(κ′κ″m−κ″κ′m)2−(κ′κ′m+κ″κ″m)(κ′κ′m+κ″κ″m)2+(κ′κ″m−κ″κ
′m)2+(κ′κ′m+κ″κ″m))1/2.



At	ζ	=	π/4,	we	get	tan	ζ	=	1	and	κ′κ′m	+	κ″κ″m	=	0.

13.3		RIGHT-	AND	LEFT-HANDED	MEDIA
Here,	 we	 obtain	 and	 analyze	 the	 expressions	 for	 the	 real	 and	 imaginary	 parts	 of	 the
complex	 refractive	 index	 n	 for	 the	 case	 when	 both	 material	 parameters	 κ	 and	 κm	 are
complex.	By	representing	these	parameters	in	the	exponential	form,	we	get

n˜2=κ˜κ˜m=|	κ˜	||	κ˜m	|e−i(δκ+δκm)=|	κ˜	||	κ˜m	|{	cos(δκ+δκm)−i sin(δκ+δκm)	}. (13.19)

Taking	the	square	root	of	the	complex	value	ñ2,	for	the	refractive	index,	we	obtain

n˜ =±|	κ˜	||	κ˜m	|e−i(δκ+δκm)/2=±|	n˜ 	|(cosδn−i sinδn), (13.20)

where	 |	 n˜ 	 |=|	 κ˜	 ||	 κ˜m	 | and δn=(δκ+δκm)/2	 are	 the	 modulus	 and	 phase	 angle	 of	 the
complex	 refractive	 index,	 respectively.	 Equation	 13.20	 indicates	 that	 in	 the	 case	 under
consideration,	 there	 is	 a	 problem	 in	 the	 choice	 of	 the	 sign	 before	 the	 square	 root.	 To
resolve	 this	problem,	 let	us	discuss	 the	meaning	of	 the	 real	 and	 imaginary	parts	of	ñ	 in
Equation	13.3.

In	 a	 medium	 with	 a	 complex	 refractive	 index	 determined	 by	 Equation	 13.3,	 the
dependence	of	the	field	component	of	a	monochromatic	wave,	given	by	Equation	13.10,
on	the	z-coordinate	and	time	can	be	represented	as	(here	we	put	α	=	0)

Hy(z,t)Ex(z,t)	}={	H0|	Z	|H0 exp(−iζ)	}exp(−k0κz)exp[	i(ωt−k0nz)	]. (13.21)

Here,	 the	 real	 part	 of	 the	 refractive	 index	n	 determines	 the	 real	 part	 of	 the	 propagation
vector	k′	 =	k0n	 and	 the	magnitude	 of	 the	 phase	 velocity	 vph	 =	 c/n.	We	 assume	 that	 the
positive	direction	of	the	z-axis	coincides	with	 the	direction	of	 the	energy	 transfer	by	 the
wave,	 that	 is,	with	 its	 Poynting	 vector	S	 =	E	 ×	H,	 which	 always	 forms	 a	 right-handed
system	with	the	directions	of	vectors	E	and	H.	Then,	for	n	>	0,	the	directions	of	vectors	k
and	S	coincide,	and	vector	k	 forms	with	vectors	E	and	H	a	 right-handed	system	(Figure
13.2a).	Analogously,	for	n	<	0,	vectors	k	and	S	have	opposite	directions	(Figure	13.2b).
This	means	 that	 the	 phase	 and	 group	 velocities	 in	 such	 a	medium	 are	 opposite	 to	 each
other,	 that	 is,	 the	 directions	 of	 a	 phase	 propagation	 and	 energy	 transfer	 are	 opposite.
Waves	for	which	vph	⇵	vgr	and,	therefore,	k	⇵	S	are	called	backward	waves.	Vectors	k,	E,
and	H	of	a	backward	wave	form	left-handed	system,	so	for	media	with	n	<	0,	the	term	left-
handed	materials	is	used.	Therefore,	it	makes	sense	to	call	“traditional”	media	with	n′	>	0
as	right-handed	materials.

According	to	Equation	13.21,	the	sign	of	the	imaginary	part	κ	determines	the	behavior
of	the	wave	amplitude	in	the	propagation	direction.	For	κ	>	0,	the	amplitude	decreases	in
the	direction	of	energy	transfer,	that	is,	the	wave	decays	(passive	environment),	while	for	κ
<	0,	 the	amplitude	increases,	 that	 is,	 the	wave	is	amplified	(active	medium).	As	a	result,
depending	on	the	signs	of	n	and	κ,	the	four	types	of	media	can	be	distinguished:

1.	Right-handed	passive	(type	I):	n>0,κ>0,(0<δ<π/2)



2.	Left-handed	passive	(type	II):	n<0,κ>0,(π/2<δ<π)
3.	Left-handed	active	(type	III):	n<0,κ<0,(π<δ<3π/2 or −π<δ<−π/2)
4.	Right-handed	active	(type	IV):	n>0,κ<0,(3π/2<δ<2π or −π/2<δ<0)

Roman	numerals	denote	the	type	of	medium	and	correspond	to	the	quadrant	number	of	the
coordinate	plane	(n,	κ)	shown	in	Figure	13.3.	The	range	of	values	of	the	phase	angle	δ	for
each	type	of	media	is	specified	earlier	in	brackets.

FIGURE	13.2	Relative	orientation	of	vectors	k,	E,	H,	and	S	 in	the	right-handed	(a)	and
left-handed	(b)	materials.

FIGURE	13.3	Representation	of	a	complex	refractive	index	ñ	on	the	coordinate	plane	(n,
κ).

For	passive	media,	κ″,	κ″	>	0	and	0≤δκ,δκm<π,	and,	therefore,	0	<	δ	<	π,	that	is,	sin	δ	>
0.	It	means	that	in	Equation	13.20,	it	is	necessary	to	take	the	sign	“+.”	In	this	case,	κ	=	|ñ|
sin	δ	>	0	corresponds	 to	wave	attenuation.	The	sign	of	a	 real	part	n	=	 |ñ|	 cos	 δ	may	be
either	 positive	 or	 negative.	 The	 sign	 “–”	 in	 Equation	 13.20	 corresponds	 to
counterpropagating	wave	transferring	energy	in	the	negative	direction	of	z-axis.

Let	us	consider	how	the	sign	of	n	depends	on	 the	complex	material	parameters	κ	and
Km.	In	the	following,	we	analyze	all	possible	special	cases	for	a	passive	medium.

1.	The	real	parts	of	the	material	constants	are	both	positive	(κ′>0,κ′m>0).	Thus,
0≤δκ,δκm<π/2,	therefore	0	≤	δ	<	π/2,	and,	respectively	n	>	0,	that	is,	the	right-
handed	passive	medium	(type	I)	is	realized.
2.	 The	 values	 κ′	 and	 κ′m	 are	 both	 negative	 (κ′<0,κ′m<0).	 Thus,
π/2<δκ,δκm≤π,π/2<δ≤π,	and	n	<	0,	that	is,	it	is	the	left-handed	passive	medium
(type	II).
3.	 The	 values	 κ′,	 κ′m	 have	 opposite	 signs	 (i.e.,	 κ′κ′m	 <	 0).	 Suppose,	 for
definiteness	that	κ′	<	0,	κ′m<0,	that	is,	π/2	<	δκ	≤	π,	and	0≤δκm<π/2.	Then,	the
phase	 angle	 δ	 of	 the	 refractive	 index	 lies	 in	 the	 interval	 π/4	 ≤	 δ	 ≤	 3π/4.	 This



means	 that	 the	 sign	 of	 n	 can	 be	 either	 positive	 or	 negative	 and	 the	medium,
depending	on	the	ratio	of	the	dielectric	and	magnetic	losses,	can	be	either	right
or	left	handed.	Furthermore,	the	condition	n	<	κ	is	satisfied,	that	is,	the	wave	in
such	medium	strongly	attenuates.	If	the	losses	are	negligible,	then	δκ=π,δκm=0,
and	n	→	0,	that	is,	in	such	a	medium,	electromagnetic	waves	cannot	propagate.

We	 also	 give	 a	 formula	 for	 the	 calculation	 of	 the	 real	 and	 imaginary	 parts	 of	 complex
impedance	of	a	medium:

Z=μ0κ˜mε0κ˜=μ0|	κ˜m	|ε0|	ε0	|e−i(δκm−δκ)=±|	Z	|(cosζ−i sinζ), (13.22)

where

|	Z	|=|	κ˜m	|μ0/|	κ˜	|ε0ζ=(δκm−δκ)/2

The	 choice	 of	 sign	 in	 Equation	 13.22	 is	 based	 on	 the	 fact	 that	 the	 real	 part	 of	 the
impedance,	Z′,	is	positive.	It	is	easy	to	show	that	for	passive	media	−π/2	≤	ζ	≤	π/2,	that	is,
cos	ζ	>	0	always,	and	for	the	real	part	of	the	complex	impedance,	it	is	necessary	to	choose
the	sign	“+.”	The	sign	of	an	imaginary	part,	Z″	=	|Z|	sin	ζ,	is	determined	by	the	sign	of	the
difference	of	angles	of	magnetic	and	dielectric	losses:	Z″	>	0	for	δε	<	δμ	and	Z″	<	0	for	δε
>	δμ.

Exercise	13.3
Determine	 the	 range	 of	 phases	 of	 complex	 electrical	 permittivity	 and	 magnetic
permeability	where	a	medium	is	“left	handed”	and	absorbing	(i.e.,	passive).

Solution.	 Let	 us	 consider	 a	medium	with	 complex	 relative	 dielectric	 permittivity	 κ	 and
magnetic	permeability	κm:

κ˜=|	κ˜	|exp(−iδκ)=|	κ˜	|(cosδκ−i sinδκ),κ˜m=|	κ˜m	|exp(−iδκm)=|	κ˜m	|(cosδκm−i sinδκm),

where	 we	 introduced	 the	moduli	 |κ˜|,	 |κ˜m|	 and	 the	 corresponding	 phases	 δκ,	 δκm.	 The
complex	refractive	index	is

n˜=κ˜κ˜m=|	κ˜	||	κ˜m	|exp(−iδκ+δκm2)=|	κ˜	||	κ˜m	|[	cos(δκ+δκm2)−i sin(δκ+δκm2)	]=n
−iκ.

In	 a	 passive	medium	with	 losses,	 the	 imaginary	 part	 of	 the	 refractive	 index	 should	 be
positive:	κ	>	0.	For	the	electric	field	of	a	plane	wave	with	complex	refractive	index,	the
following	relationships	are	valid:

E∼exp(−ik0n˜x)∼exp(−ik0nx)exp(−k0κx).
Thus,

sin(δκ+δκm2)>0   or   0<δκ+δκm2<π.

Let	us	take	into	account	that	the	real	components	of	κ˜	and	κ˜m	are	negative.	In	this	case,
we	find	that

cos δκ<0   or   π2<δκ< 3π2,cos δκm<0  or  π2<δκm< 3π2.

Taking	into	account	these	relationships,	we	find	that



π2<δκ+δκm2<3π2.

Let	 us	 combine	 both	 of	 these	 conditions	 for	 δκ+δκm:κ>0	 and	 κ′<0,κ′m<0.	 Thus,	 the
medium	is	“left	handed”	and	absorbing	in	the	region	where

π2<δκ+δκm2<π.

13.4		MEDIA	WITH	A	NEGATIVE	VALUE	OF	ONE	OF
THE	MATERIAL	CONSTANTS:
ELECTROMAGNETIC	TUNNELING

Let	us	 consider	 features	of	propagation	of	 electromagnetic	waves	 in	a	medium	with	 the
negative	value	of	one	of	its	material	constants.	Consider	the	ideal	case	of	absence	of	losses
(i.e.,	κ″=κm″=0).	For	definiteness,	we	assume	that	κ′=−|	κ	 |<0,	while	κ′m=κm>0	(i.e.,	 in
Equation	 13.1	 δκ	 =	 π,	 δκm=0).	 Calculation	 using	 Equation	 13.20	 gives	 the	 purely
imaginary	refractive	index	and	wave	number

n˜=iκ=−i|	κ	|κm,   k=−ik″=−ik0|	κ	|κm, (13.23)

where	 k0	 is	 the	 wave	 number	 in	 vacuum.	 According	 to	 Equation	 13.22,	 the	 medium
impedance	will	also	be	purely	imaginary:

Z=−μ0κmε0|	κ	|=iμ0κmε0|	κ	|=iZ″. (13.24)

Taking	 into	 account	Equations	 13.23	 and	 13.24,	 the	 expressions	 for	 the	 components	 of
electric	and	magnetic	fields	of	a	wave,	which	propagates	in	the	direction	of	z-axis,	take	the
form

Hy=Ae−k″zeiφ,Ex=ZHy=iZ″Ae−k″zeiφ=Z″Ae−k″zei(φ+π/2), (13.25)

where	φ	=	ωt	+	α.	Let	us	calculate	the	real	part	of	complex	expressions	(13.25):

Hy=ReHy=Ae−k″zcosφ,Ex=ReEx=Z″Ae−k″zcos(φ+π/2)=−Z″Ae−k″zsinφ. (13.26)

Analyzing	these	expressions,	we	come	to	the	following	conclusions:

1.	Due	 to	 the	 fact	 that	 k′	 =	 0,	 it	 is	 impossible	 to	 call	 this	 process	 a	 traveling
wave.	 It	 is	 a	 harmonic	 electromagnetic	 oscillation	 with	 amplitude,	 which
decreases	exponentially	in	the	positive	z-direction.
2.	The	phase	shift	between	the	oscillations	of	the	vectors	E	and	H	is	π/2,	that	is,
Ex	 and	 Hy	 are	 the	 reactive	 components	 of	 fields.	 Thus,	 the	 average	 energy
(intensity)	 flux	 in	 the	 z-direction	 is	 equal	 to	 zero.	This	 is	 confirmed	 by	 direct
calculations:

Sz=ExHy=−12Z″A2e−2k″zsin 2φ, (13.27)

that	is,	the	energy	flow	oscillates	with	frequency	2ω,	and	its	average	value	over



a	period	is	equal	to	zero.
3.	The	energy	densities	of	electric	and	magnetic	fields	are	given	by

ue=−12|	κ	|ε0Ex2=−u0(1−cos 2φ),um=12κmμ0Hy2=u0(1+cos 2φ), (13.28)

where	 we	 introduced	 the	 average	 value	 of	 the	 energy	 density	 of	 each	 field
component,	and

u0=14|	κ	|ε0(Z″A)2e−2k″z=14κmμ0A2e−2k″z (13.29)

The	values	ue	and	um	oscillate	with	a	frequency	2ω	around	their	average	values
−u0	and	+u0,	respectively.	This	is	accompanied	by	a	periodic	process	of	mutual
transformation	of	the	energy	of	the	electric	and	magnetic	fields.	This	process	is
analogous	to	the	process	in	an	ideal	resonant	circuit,	which	has	a	pure	reactive
resistance.	The	total	energy	density

u=ue+um=2u0 cos 2φ=2u0 cos 2(ωt+α) (13.30)

varies	around	the	average	value	〈u〉	=	−u0	+	u0	=	0.	From	the	point	of	view	of
energy	 relations,	 this	 process	 resembles	 a	 standing	 electromagnetic	wave	with
the	important	difference	that	in	such	wave	〈u〉	≠	0.

The	process	described	here	can	be	realized	near	 the	planar	 interface	between	medium
“1”	 (vacuum	 [air]),	 with	 κ1	 =	 κm1	 =	 1,	 and	 medium	 “2,”	 for	 which	 κ2	 <	 0,	 κm2	 >	 0.
Consider	 a	 plane	 monochromatic	 wave	 incident	 normally	 from	 medium	 “1”	 onto	 the
interface	at	z	=	0.	The	electromagnetic	 field	penetrates	 into	 the	 second	medium	and	 the
decaying	 oscillations	 in	 the	 second	 medium	 are	 described	 by	 Equation	 13.26.	 These
decaying	oscillations	have	electromagnetic	energy	that	 is	determined	by	Equation	13.28.
Also,	 there	 is	 an	 instantaneous	 energy	 flow	 (13.28)	 due	 to	 which	 energy	 enters	 into
medium	“2”	during	the	first	half	of	the	period	of	oscillations,	and	then	during	the	second
half	of	the	period	of	oscillations,	it	leaves	medium	“2,”	that	is,	it	returns.	Thus,	the	average
flow	through	the	boundary	is	equal	 to	zero.	This	means	that	 there	 is	a	 total	reflection	of
the	incident	wave	(even	at	normal	incidence),	and	a	standing	wave	is	formed	in	front	of
the	boundary.	The	distribution	of	the	electric	field	amplitude	along	the	z-axis	for	this	case
is	shown	in	Figure	13.4a.	We	note	that	the	total	reflection	from	the	interface	is	“violated”
(or	“broken”)	if	the	wave	is	reflected	from	a	thin	enough	layer	of	medium	“2”	(thickness
of	 the	medium	must	be	of	 the	order	of	 1/k″).	 In	 this	 case,	 in	 the	back	 surface	 layer,	 an
additional	oscillation	decreasing	in	the	negative	z-	direction	is	formed.	In	this	case,	Z′	=	0,
Z″	 ≠	 0.	 Among	 three	 components	 of	 the	 total	 energy	 flow	 of	 the	 counterpropagating
waves,	only	the	interference	energy	flow	is	not	equal	to	zero.	For	k′	=	0,	it	does	not	depend
on	z-coordinate:

Sint=Z″|	p	||	q	|A2sin(αp−αq), (13.31)

where

|p|	and	|q|	are	the	moduli



αp	 and	 αq	 are	 the	 phase	 angles	 of	 the	 amplitude	 coefficients	 of	 the	 two
counterpropagating	 waves	 inside	 the	 layer	 (these	 values	 can	 be	 found	 from	 the
boundary	conditions)

Due	 to	 the	 existence	 of	 the	 interference	 that	 is	 described	 by	 Equation	 13.31,	 the
electromagnetic	energy	partially	“leaks”	or	“tunnels”	through	the	thin	layer	in	which	the
solitary	wave	does	not	transfer	energy.	In	this	case,	we	say	that	broken	total	reflection	or
electromagnetic	tunneling	takes	place	(Figure	13.4b).

In	 a	 dielectric	 behind	 the	 thin	 layer	 (medium	 “3”),	 we	 have	 the	 propagation	 of	 a
traveling	wave.	If	we	increase	the	layer	thickness	(medium	“2”),	then	the	amplitude	of	the
wave	 in	medium	“3”	 asymptotically	 approaches	 to	 zero.	The	wave	 in	 front	 of	 the	 layer
will	not	be	purely	standing	as	the	value	of	the	field	at	the	nodes	is	not	equal	to	zero.

In	 a	 real	 case,	 the	 medium	 experiences	 losses	 (κ″,κ″m≠0)	 and	 the	 real	 parts	 of	 the
propagation	constant	k′	and	impedance	Z′	differ	from	zero.	Thus,	the	wave	in	medium	“2”
is	traveling	and	transferring	energy	that	leads	to	violation	of	the	total	reflection	even	in	the
situation	shown	in	Figure	13.4a.	However,	because	of	the	relation	k′	<	k″,	the	wave	in	the
medium	“2”	will	be	strongly	damped.

FIGURE	13.4	Distribution	of	the	amplitude	of	electric	field	for	the	case	of	thick	(a)	and
thin	(b)	layers	“2”	with	negative	κ2.

It	 should	 be	 noted	 that	 the	 properties	 of	 media	 with	 negative	 permittivity	 κ	 (or
permeability	 κ	 J	 have	 been	 discussed	 here	 in	 the	 ideal	 case	 of	 a	 medium	 without
dispersion.	All	real	media	(natural	or	artificial)	with	negative	permittivity	have	frequency
dispersion.	Dielectrics	 in	 the	vicinity	of	resonance	absorption	 lines,	metals	 in	 the	visible
region	 of	 the	 spectrum,	 magnetized	 ferrites,	 plasma,	 and	 many	 synthetic	 composite
materials	 are	 examples	 of	media	 that	 exhibit	 negative	material	 constants	 (κ	 or	 κm)	 in	 a
certain	frequency	range.	A	more	rigorous	analysis	with	taking	into	account	the	dispersion
of	 κ(ω)	 and	 κm(ω)	 requires	 correction	 of	 the	 equations	 given	 earlier	 and	 especially	 of
Equation	13.28	for	the	density	of	electromagnetic	energy	in	a	medium.

Exercise	13.4
A	 linearly	 polarized	 plane	 wave	 with	 electric	 field	 amplitude	 E0	 and	 frequency	 ω	 is
incident	 perpendicularly	 from	 vacuum	 (κ1	 =	 1	 and	 κm1	 =	 1)	 on	 a	 layer	 made	 of
nonmagnetic	material	(κm2	=	1)	with	real	and	negative	electrical	permittivity	(κ2	<	0).	The
thickness	of	the	layer	is	equal	to	d.	Find	the	intensity	of	the	wave	transmitted	through	the
layer	neglecting	reflection	from	the	back	surface.

Solution.	 Let	 us	 assume	 that	 the	 wave	 is	 propagating	 in	 the	 positive	 z-direction.	 The
surface	on	which	 the	wave	 is	 incident	 is	 located	at	 z	=	0.	Since	κ″,κm″=0,	 there	are	no



energy	losses	inside	the	layer.	Given	that	the	dielectric	permittivity	of	the	layer	is	negative
(κ2	<	0),	we	can	write	κ2	=	−|κ2|	<	0,	and	this	gives	us	a	purely	imaginary	refractive	index
and	wave	number:

n˜2=−|	κ2	|κm2=−i|	κ2	|,    k2=k0n˜2=−ik2|	κ2	|,

where	k0	is	the	wave	number	in	vacuum.	The	impedance	of	the	layer	in	this	case	is	also	a
purely	imaginary	number	in	contrast	to	the	impedance	of	vacuum,	Z0:

Z=−μ0κm2ε0|	κ2	|=iZ0|	κ2	|.

Let	us	write	the	expressions	for	the	components	of	the	electric	and	magnetic	fields	of	the
wave	propagating	in	the	layer:

Ex(z)=E0 exp(−|	κ2	|z)exp(iωt),Hy(z)=Ex(z)Z2=−i|	κ2	|Z0E0 exp(−|	κ2	|z)exp(iωt)=|	κ2
|Z0E0 exp(−|	κ2	|z)exp(i(ωt−π/2)).

The	wave	amplitude	after	transmission	through	the	layer	(at	z	=	d)	is

Ex(d)=E0 exp(−|	κ2	|d)exp(iωt),Hy(d)=|	κ2	|Z0E0 exp(−|	κ2	|d)exp(i(ωt−π/2)).

Let	us	write	the	real	part	of	these	complex	expressions	for	the	following	fields:

ReEx(d)=E0 exp(−|	κ2	|d)cos(ωt),ReHy(d)=|	κ2	|Z0E0 exp(−|	κ2	|d)sin(ωt).

The	intensity	of	the	wave	is	given	by	the	modulus	of	the	energy	flux	density,	that	is,	by	the
Poynting	 vector.	 In	 this	 problem,	 only	 one	 of	 its	 components,	 Sz,	 is	 nonzero,	 and	 after
transmission	through	the	layer,	it	is	equal	to

Sz(d)=Re(Ex(d)Hy(d))=|	κ2	|E02Z0exp(−2|	κ2	|d)cos(ωt)sin(ωt)=S0d sin(2ωt),S0d=|	κ2
|E02Z0exp(−2|	κ2	|d).

From	 this	 expression,	 it	 follows	 that	 in	 this	 case,	 the	 energy	 flux	 density	 of	 the	 wave
traveling	 through	 the	 layer	 has	 harmonic	 time	 dependence	 at	 a	 frequency	 twice	 the
frequency	of	 the	wave.	This	means	that	during	the	first	half	period	τ	=	π/2ω,	the	energy
flux	comes	out	 from	the	 layer	and	during	 the	next	half	period	τ	=	π/2ω,	 the	energy	flux
enters	 the	 layer.	 The	 average	 flux	 during	 period	 2τ	 is	 equal	 to	 zero	 as	 we	 neglected
reflection	from	the	back	surface	(see	Equation	13.31	for	comparison):

〈	Sz(t)	〉=12τ∫02τSz(t)dt=S0d2τ∫02τsin(2ωt)dt=
−S0d4ωτcos(2ωt)|02τ=S0d4ωτ(cos(0)−cos(2π))=0.

13.5		MEDIA	WITH	NEGATIVE	VALUES	OF	BOTH
MATERIAL	CONSTANTS:	NEGATIVE
REFRACTION

The	unusual	electromagnetic	properties	of	media	with	negative	material	parameters	(κ	<	0,
κm	<	0)	were	first	considered	in	the	theoretical	works	of	V.G.	Veselago	(1967),	who	first
introduced	 the	 concept	 of	 a	 negative	 refractive	 index.	 The	 first	 experimental	 report	 on
artificial	 materials	 with	 such	 properties	 appeared	 in	 the	 beginning	 of	 2000.	 These
materials	are	composites	consisting	of	a	set	of	metal	elements	(electromagnetic	particles)
embedded	into	a	dielectric	matrix.	The	elements	are	arranged	in	a	specific	order	to	form	a



structure	similar	to	a	crystal	lattice.	In	the	lattice,	elements	of	two	types	are	alternated.	The
elements	of	first	 type	are	 thin	metal	 rods,	 representing	antennas,	which	 interact	with	 the
electric	field	of	a	wave	propagating	in	a	structure.	The	elements	of	second	type	are	rings
with	 cuts,	 interacting	with	 the	magnetic	 component	 of	 an	 electromagnetic	 wave.	 If	 the
dimensions	of	 these	elements	and	 the	distance	between	 them	are	much	 smaller	 than	 the
wavelength	 of	 an	 incident	 radiation,	 this	 structure	 can	 be	 considered	 as	 a	 continuous
medium,	which	is	homogeneous	and	isotropic.

Consider	 a	 homogeneous	 isotropic	 nonabsorbing	 medium	 with	 negative	 material
parameters:	κ	<	0	and	κm	<	0.	Moreover,	the	parameters	κ,	κm	are	scalar	and	real,	that	is,	κ
=	−|κ|,	κm	=	−|κm|.	In	this	case,	Maxwell’s	equations	that	relate	the	vectors	k,	E,	and	H	of	a
plane	monochromatic	wave	are	given	by

k×E=−ω|	κm	|μ0H,k×H=ω|	κ	|ε0E. (13.32)

The	analysis	of	 these	expressions	shows	 that	simultaneous	change	of	signs	of	κ	and	κm.
converts	 the	 right-handed	 combination	 of	 three	 vectors	k,	 E,	 and	H	 into	 a	 left-handed
combination	(Figure	13.2).	Consequently,	 the	medium	with	κ	<	0,	κm	<	0	 is	 left	handed
with	a	negative	refractive	index,	and	the	wave	in	such	a	medium	is	a	backward	wave:	the
directions	of	vectors	k	and	S	are	opposite	to	each	other.

In	 order	 to	 prove	 the	 negative	 sign	 of	 the	 refractive	 index,	 the	 negative	 parameters
should	be	considered	as	complex	quantities.	Assuming	δκ=δκm=π,	we	find	that	δ=π,n=−|
n˜|<0, and κ=0,	and	κ	=	0,	that	is,

n=−|	κ	||	κm	|<0. (13.33)

An	example	of	an	electromagnetic	wave	in	a	material	with	a	negative	refractive	index	is
given	here.	Consider	the	reflection	and	refraction	of	a	plane	monochromatic	wave	at	 the
interface	 between	medium	1	with	n1	 >	 0	 and	 left-handed	medium	2	with	n2	 <	 0.	 If	we
formally	write	Snell’s	law,	taking	into	account	the	negative	sign	of	n2,	we	find	that

sinθ0sinθ2=n2n1,   sinθ2=−n1|	n2	|sinθ0<0, (13.34)

that	 is,	 the	 refraction	 angle	 θ2	 is	 negative.	 It	 means	 that	 unlike	 a	 “routine”	 case	 of
reflection	and	 refraction	on	 interface	between	 two	“right-handed”	media	 (Figure	 13.5a),
the	incident	and	refracted	beams	lie	on	the	same	side	of	 the	interface	normal	at	point	of
incidence	(Figure	13.5b).

The	Poynting	vector	S2	of	the	refracted	wave	in	the	left-handed	medium	is	still	directed
into	medium	2.	Since	the	refracted	wave	in	a	left-handed	medium	is	a	backward	wave,	its
wave	vector	k2	will	be	directed	toward	the	interface.



FIGURE	13.5	Reflection	and	refraction	at	the	boundary	of	two	right-handed	materials	(a)
and	right-handed	and	left-handed	materials	(b).

FIGURE	13.6	Path	of	the	rays	from	point	source	S	that	are	transmitted	through	a	layer	of
the	“left-handed”	medium	(Veselago	lens).

In	 other	words,	 in	 this	 case,	 the	 energy	 leaves	 from	 the	boundary,	whereas	 the	 phase
front	 is	 moving	 toward	 the	 boundary.	 The	 anomalous	 direction	 of	 the	 refracted	 beam
provides	a	realization	of	the	equality	k1x	=	k2x,	necessary	for	the	satisfaction	of	boundary
conditions	 for	 vectors	 of	 an	 electromagnetic	 field.	Left-handed	media	 are	 also	 called	 as
media	with	negative	refraction.

Using	 this	 type	 of	 refraction,	 it	 is	 possible	 to	 fabricate	 an	 unusual	 convex	 lens	 using
“left-handed”	medium.	A	plane	layer	of	a	“left-handed”	medium	can	be	used	to	make	such
a	 lens.	 The	 ray	 path	 from	 a	 point	 source	S	 outside	 and	 inside	 of	 the	 layer	 is	 shown	 in
Figure	13.6.	It	is	seen	that	a	diverging	light	beam	will	concentrate	inside	the	layer	into	a
point	 (at	 a	 sufficient	 width	 of	 the	 layer)	 as	 a	 result	 of	 refraction.	 After	 this,	 the	 beam
begins	to	diverge.	After	transmission	through	the	layer,	we	observe	the	reverse	refraction
and	the	beam	converges	at	point	S′.	Thus,	Figure	13.6	demonstrates	the	example	of	a	well-
known	Veselago	lens	consisting	of	a	slab	of	left-handed	material.

Exercise	13.5
Plot	the	ray	path	for	oblique	incidence	of	a	plane	wave	on	the	interface	between	vacuum
(κ1	=	1	and	κm1	=	1)	and	a	“left-handed”	medium	(κ2	<	0	and	κm2	<	0)	using	the	boundary
conditions	for	the	electric	and	magnetic	fields.	Consider	the	case	of	transmission	through
the	plane	layer	of	a	“lefthanded”	material.

Solution.	Let	us	 consider	 transmission	of	 the	plane	wave	 through	 the	 interface	between
two	different	media.	The	boundary	conditions	for	 the	normal	components	of	 the	electric
and	magnetic	field,	Dn	=	ε0κEn	and	Bn	=	μ0κmHn,	are

κ1En1=κ2En2,   κm1Hn1=κm2Hn2.



Since	 κ2	 <	 0	 and	 κm2	 <	 0,	 then	 from	 these	 relationships	 it	 follows	 that	 during	 the
transmission	 of	 wave	 from	 a	 “right-handed”	 medium	 to	 a	 “left-handed”	 medium,	 the
following	relationships	are	valid:

En2En1=κ1κ2<0,   Hn2Hn1=κm1κm2<0.

This	 indicates	 an	 unusual	 ray	 path	 for	 the	 refracted	 ray—the	 ray	 bends	 in	 the	 direction
opposite	to	the	direction	of	incidence.	We	get	the	same	result	if	we	use	Snell’s	law:

sinθ0sinθ2=n2n1<0,   sinθ2=n1n2sinθ0<0,

that	is,	the	angle	of	refraction	θ2	<	0	and	the	ray	in	the	“left-handed”	medium	bends	in	the
“negative”	direction	from	the	normal	(Figure	13.7).

FIGURE	 13.7	 The	 ray	 paths	 of	 incident	 and	 refracted	 rays	 at	 the	 interface	 of	 “right-
handed”	and	“lefthanded”	media.

Exercise	13.6
A	plate	of	thickness	d	and	negative	refractive	index	n2	=	−1	is	placed	in	the	air	(a	medium
with	a	positive	refractive	index	n1	=	1).	A	point	source	of	monochromatic	light	is	located
at	a	distance	l	from	the	left	face	of	the	plate.	Draw	a	diagram	of	the	rays	coming	from	the
point	source	as	they	travel	through	the	plate	for	the	following	cases:	(a)	d	=	3l/2	and	(b)	d
=	l/2.

Solution.	(a)	d	=	3l/2:	When	a	 light	beam	is	 incident	on	a	plate	with	negative	refractive
index,	the	beam	will	refract	inward	at	an	angle	determined	by	Snell’s	law	(Figure	13.8a).
Since	the	absolute	value	of	the	two	indices	of	refraction	is	the	same,	the	angle	of	refraction
will	 be	 equal	 to	 the	 angle	 of	 incidence.	 The	 beams	 will	 converge	 at	 the	 point	 A	 at	 a
distance	l	into	the	plate	and	then	will	diverge	for	the	remaining	distance	of	l/2.	The	beam
will	then	refract	inward	again,	at	the	same	angle,	upon	leaving	the	plate	and	the	beam	will
converge	once	again	a	distance	l/2	away	from	the	plate.	Thus,	the	plate	acts	as	a	lens;	for
the	observer,	the	image	of	point	S	will	be	located	to	the	right	of	the	plate	at	point	S′.

(b)	d	=	l/2:	this	case,	the	incident	beams	refract	inward	at	the	air–plate	interface;	since	the
plate	 thickness	 is	 less	 than	 the	 distance	 l,	 the	 beam	 does	 not	 reconverge	 in	 the	 plate
(Figure	 13.8b).	 Upon	 exiting	 the	 plate,	 the	 beams	 refract	 again	 at	 the	 same	 angle	 and
continue	to	diverge.	Therefore,	the	plate	acts	as	a	lens	and	for	the	observer	the	image	of
point	S	will	be	located	at	point	S‘	that	is	on	the	air–plate	boundary.	For	a	thinner	plate,	the
image	S′	will	move	closer	to	S	and	as	d	tends	to	zero,	S′	coincides	with	S.



FIGURE	13.8	Path	of	the	rays	from	point	source	S	that	are	transmitted	through	a	plate	of
the	“left-handed”	material	of	thickness	d	=	3l/2	(a)	and	d	=	l/2	(b).

PROBLEMS
13.1	Find	the	phase	velocity	and	damping	coefficient	of	waves	propagating
in	 a	 homogeneous	 isotropic	 medium	 with	 complex	 permittivity	 and
permeability	ε=ε0(κ′+iκ″)	and	μ=μ0(κm′+iκm″).
(Part	of	the	answer:	n(ω)=1+C/ω2.)
13.2	 The	 dielectric	 permittivity	 and	 magnetic	 permeability	 of	 a	 medium
depend	on	frequency	as	follows:

ε=ε0κ=ε0(1−Feω2+iγeω),   μ=μ0κm=μ0(1−Fmω2+iγmω),

where	 Fe,	 Fm	 and	 γe,	 γm	 are	 known	 constants.	 Find	 the	 dependence	 on
frequency	of	 the	 tangents	of	 angles	 related	 to	 the	dielectric	 and	magnetic
losses.
13.3	 The	 dielectric	 permittivity	 and	 magnetic	 permeability	 of	 a	 medium
depend	on	the	frequency	as	follows:

ε=ε0κ=ε0(1+Feω0e2−ω2),   μ=μ0κm=μ0(1+Fmω0m2−ω2),

Find	 the	 frequency	 ranges	 where	 the	 material	 parameters	 ε	 and	 μ	 are
negative,	that	is,	where	the	medium	can	be	considered	as	“left	handed.”
13.4	 Find	 the	 phase	 impedance	 ζ	 for	 a	 medium	 with	 complex	 material
parameters	ε=ε0(κ′+iκ″), μ=μ0(κ′m+iκ″m).
13.5	 A	 nonabsorbing	 medium	 with	 negative	 dielectric	 permittivity	 and
positive	magnetic	 permeability	 occupies	 the	 half-space	 z	 ≥	 0.	 A	 linearly
polarized	 plane	wave	 is	 incident	 normally	 on	 the	medium	 from	 vacuum.
Find	the	energy	reflection	coefficient	of	the	wave.	(Answer:	R	=	1.)
13.6	A	plane	wave	is	incident	from	a	homogeneous	medium	with	a	positive
refractive	index	n1	at	the	interface	with	a	medium	having	a	refractive	index
of	n2.	Draw	the	paths	of	rays	in	the	media	with	(a)	n2	>	0	and	(b)	n2	<	0.
13.7	A	plate	with	thickness	d	and	with	a	negative	refractive	index	n2	=	−1
is	placed	in	a	medium	with	a	positive	refractive	index	(air	with	n1	=	1).	A
point	source	of	monochromatic	radiation	is	located	at	a	distance	l	from	one
of	the	faces	of	the	plate.	Draw	a	diagram	of	the	rays	coming	from	the	point
source	 that	 travel	 through	 the	plate.	Find	 the	distance	at	which	 these	rays
focus	past	the	plate.



Appendix	A
PHYSICAL	CONSTANTS	AND	UNITS
TABLE	A.1
SI	Units

Quantity Name Symbol Equivalent

Length Meter,	m l m

Mass Kilogram,	kg M kg

Time Second,	s t s

Speed,	velocity v m	s−1

Acceleration a m	s−2

Angular	velocity ω rad	s−2

Frequency Hertz,	Hz f s−1

Force Newton,	N F kg	m	s−2

Pressure,	stress Pascal,	Pa P N	m−2

Work,	energy Joule,	J W N	m,	kg	m2	s−2

Impulse,	momentum p N	s,	kg	m	s−1

Power Watt,	W N J	s−1

Electric	charge Coulomb,	C q A	s

Electric	potential Volt,	V φ J	C−1,	W	A−1

Resistance Ohm,	Ω R V	A−1

Conductance Siemens,	S σ A	V−1,	Ω	−1

Magnetic	flux Weber,	Wb Φ V	s



Inductance Henry,	H L Wb	A−1

Capacitance Farad,	F C C	V−1

Electric	field	strength E V	m−1,	N	C−1

Magnetic	flux	density Tesla,	T B Wb	m−2,	N	A−1	m−1

Electric	displacement D C	m−2

Magnetic	field	strength H A	m−1

Temperature Kelvin,	K T K

TABLE	A.2
Physical	Constants

Constant Symbol Value Units

Speed	of	light	in	a	vacuum c 2.9979	×	10s	≈	3	×	108 m	s−1

Elementary	charge e 1.602	×	10−19 C

Electron	mass me 9.11	×	10−31 kg

Electron	charge	to	mass	ratio e/me 1.76	×	1011 C	kg−1

Proton	mass mp 1.67	×	10−27 kg

Permittivity	of	free	space ε0 10−9/(36π)	≈	8.854	×	10−12 F	m−1

Permeability	of	free	space μ0 4π	×	10−7 H	m−1

Impedance	of	free	space Z0=μ0/ε0 120π	≈	376.73 Ω

Boltzmann’s	constant kB 1.38	×	10−23 J	K−1

Planck’s	constant h 6.626	×	10−34 J	s

TABLE	A.3
Conversion	of	SI	Units	to	Gaussian	Units

Quantity SI	Unit Gaussian	Unit



Length 1	m
102	cm

Mass 1	kg 103	g

Force 	1	N 105	dyne	=	105	g	cm	s−2

Energy 1	J 107	erg	=	107	g	cm2	s−2

1	eV	=	1.602	×	10−19	J	=	1.602	×	10−12	erg

TABLE	A.4
Standard	Prefixes	Used	with	SI	Units



Appendix	B
SOME	MATHEMATICAL	RELATIONS	AND

IDENTITIES
The	roots	of	a	quadratic	equation

x1,2=−b±b2−4ac2a   for  ax2+bx+c=0,

and

x1,2=−p2±p24−q,   x1+x2=−p,    x1⋅x2=q   for  x2+px+q=0.

Algebraic	formulas

(a±b)2=a2±2ab+b2,

(a±b)3=a3±3a2b+3ab2±b3,

a2−b2=(a−b)(a+b),

a3−b3=(a−b)(a2+ab+b2),

a3+b3=(a+b)(a2−ab+b2),

axay=ax+y,    abn=anbn,

axbx=(ab)x,    a/bn=an/bn,

(ax)y=axy,     amn=(an)m=am/n,

axay=axy,    amn =anm=a1/nm.

Length	of	the	circumference	of	radius	R

l	=	2πR,	l	=	πD,	D=	2R.

Area	of	a	circle	of	radius	R

A=πR2,  A=πD24.

Area	of	a	sphere	of	radius	R

A=4πR2,    A=πD2.

Volume	of	a	sphere	of	radius	R

Vol=43πR3,   Vol=16πD3,  D=2R.

Relations	for	a	triangle



For	γ	=	π/2	(see	Figure	B.1a)

a2+b2=c2,  sin α	=	ac,   cos α	=	bc,   tan  α	=	ab,  cot α	=	bc,   A =12ab.

For	γ	≠	π/2	(see	Figure	B.1b)

c2=a2+b2−2ab cos γ,    asin α=bsin β=csin γ,A=12ab sin γ=12ac sin β=12bc sin α.

Values	for	some	trigonometric	functions

Trigonometric	identities

sin(−x)=−sin x,    sin x=cos(π2−x),

FIGURE	B.1	Right	(a)	and	arbitrary	(b)	triangles.

cos(−x)=cos x,    cos x=sin(π2−x),

sin α	+	cos2 α =1,

sin(α±β)=sin αcosβ±cos	αsinβ,

cos(α±β)=cos αcosβ∓sin	αsinβ,

sinh(α±β)=sinhα cosh β±cosh	αsinhβ,



cosh(α±β)=coshα cosh β∓sinh	αsinhβ,

cos2α=cos2 α−sin2 α,

sin 2α	=2sin	α	cos α,

sin 3α=3sin α−4sin3 α,

cos 3α=4cos3 α−3cos α,

1+tan2α=1cos2α=sec2α,     1+cot2α=1sin2α=csc2α,

sin2 α=12(1−cos 2α),      cos2 α=12(1+cos 2α),

sin3 α=14(3sin α−sin 3α),   cos3 α=14(3cos α+cos 3α),

2sin α cos β	=	sin(α+β)+sin(α−β),

2cos α cos β	=	cos(α+β)+cos(α−β),

2sin α sin β	=	cos(α−β)−cos(α+β),

tan (α+β)=tan α	+	tan	β1− tan α	tan	β.

Logarithmic	relations

loga x=y,    ay=x,   aloga x=x,

loga(xy)=loga x+loga y,

loga(xy)=loga x−loga y,

logaxk=kloga x,    loganx=1nloga x,

log10x=lg x,    loge x=ln x,    e=2,72,…,

loga x=logb xlogb a,    loga b=1logba,

lg x=lnxln 10=(ln x)lge.

Derivatives	of	some	functions

Function Derivative Function Derivative

c	=	const 0 loga	x (1\lna)x−1

xn nxn–1 sin	x cos	x



ex ex cos	x −sin	x

ax axln	a tan	x 1/cos2	x

ln	x 1/x cot	x −1/sin2	x

Integrals	of	some	functions

Function Integral Function Integral

xn xn+1/(n+1) sin	x −cos	x

1/x ln|x| cos	x sin	x

ex ex tan	x −ln|cos	x|

ax ax/lna cot	x ln|sin	x|

Taylor	series	for	|x|	<	1

(1±x)n=1±nx+n(n−1)2!x2±n(n−1)(n−2)3!x3+⋯,

sin x=x−x33!+x55!−…,     cos x=1−x22!+x44!−…,

ln(1+x)=x−x22+x33−…,       ln(1−x)=−x−x22−x33−…,

ex=1+x1!+x22!+x33!+⋯,    n!=1⋅2⋅3⋅4⋯(n−1)⋅n.
Trigonometric	identities	for	a	complex	argument	(i=−1)

cosh(ix)=cos x,    sinh(ix)=i sin x,

cos(ix)=cosh x,    sin(ix)=i sinh x,

sin(α±iβ)=sin α cosh β±i cos α sinh  β,

cos(α±iβ)=cos α cosh β∓i sin α sinh  β,

sinh(α±iβ)=sinh α cosβ±icosh α sin β,

cosh(α±iβ)=cosh α cosβ∓isinh α sinβ.
Euler’s	formula

e±ix=cos x±i sin x,

cos x=12(e+ix+e−ix),     sin x=12i(eix−e−ix),



e±x=cosh x±sinh x,

cosh x=12(ex+e−x),     sinh(x)=12(ex−e−x).



Appendix	C
SOME	RELATIONS	FROM	VECTOR	AND	TENSOR

ALGEBRA
C.1	VECTOR	ALGEBRA
Vector	A	in	a	Cartesian	coordinate	system	has	the	form	A=iAx+jAy+kAz:	its	components
are	Ax	=	A	cos	α,	Ay	=	A	cos	β,	and	Az	=	A	cos	γ	(see	Figure	C.1).	Here	i,	j,	k	are	the	unit
vectors	along	the	x,	y,	z	axes,	respectively	(not	shown	in	Figure	C.1).

Analogous	 relations	 can	 be	 written	 for	 the	 position	 vector	 r=irx+jry+krz	 with
components	rx	=	r	cos	α,	ry	=	r	cos	β,	rz	=	r	cos	γ,	or	any	other	vector	 in	 the	Cartesian
coordinate	system.

The	magnitude	of	vector	r	is	given	by	r=rx2+ry2+rz2=x2+y2+z2.

The	directional	angles	α,	β,	and	γ	of	any	vector	satisfy	the	following	identity:

cos2 α	+	cos2 β	+	cos2 γ =	1.

ADDITION	AND	SUBTRACTION	OF	VECTORS
Vector	C	=	A	±	B	and	its	components	are	(Figure	C.2)

C=iCx+jCy+kCz=i(Ax±Bx)+j(Ay±By)+k(Az±Bz).

SCALAR	(OR	DOT)	PRODUCT	OF	TWO	VECTORS
A⋅B=|	A	|×|	B	|cosφ=AB cosφ=AxBx+AyBy+AzBz,

FIGURE	C.1	Vector	A	in	a	Cartesian	coordinate	system.



FIGURE	C.2	Parallelogram	rule	for	addition	(a)	and	subtraction	(b)	of	two	vectors.

where

A=Ax2+Ay2+Az2

B=Bx2+By2+Bz2

φ	is	the	angle	between	vectors	A	and	B

cosφ=AxBx+AyBy+AzBz|	A	|⋅|	B
|=AxBx+AyBy+AzBz(Ax2+Ay2+Az2)⋅(Bx2+By2+Bz2).

The	following	are	the	properties	of	scalar	product:

A⋅B=B⋅A,A⋅(B+C)=A⋅B+A⋅C,A⋅A=|	A	|2=A2,i⋅j=j⋅k=k⋅i=0,i⋅i=j⋅j=k⋅k=1.
It	 follows	 from	 these	 that	 two	 vectors	 are	 perpendicular	 to	 each	 other	 if	 their	 scalar
product	is	equal	to	zero.

VECTOR	(OR	CROSS)	PRODUCT	OF	TWO	VECTORS
The	 vector	 (or	 cross)	 product	 of	 two	 vectors	A	 and	B	 is	 a	 vector	C	 =	A	 ×	B	 with	 the
direction	perpendicular	to	the	plane	formed	by	vectors	A	and	B;	the	magnitude	C	is	equal
to	the	area	of	the	parallelogram	formed	by	vectors	A	and	B.	C	=	AB	sinφ,	where	φ	is	the
angle	between	A	and	B	(Figure	C.3).

The	 right-hand	 rule	must	 be	 applied	 as	 follows	 to	 determine	 the	 direction	 of	A	 ×	B.
Rotate	A	 in	 the	plane	defined	by	 the	vectors	A	and	B	along	 the	shortest	angle	so	 that	 it
coincides	 with	 B.	 Then	 curl	 the	 fingers	 of	 the	 right	 hand	 in	 the	 same	 direction;	 the
direction	of	the	thumb	gives	the	direction	of	A	×	B.

FIGURE	C.3	Vector	product	of	two	vectors.

In	the	Cartesian	coordinate	system



A×B=|	ijkAxAyAzBxByBz	|=i(AyBz−AzBy)+j(AzBx−AxBz)+k(AxBy−AyBx).

The	following	are	some	properties	of	the	cross	product:

A×B=−B×A,A×(B×C)=B(AC)−C(AB),A×(B+C)=A×B+A×C,

A⋅(B×C)=|	AxAyAzBxByBzCxCyCz	|=Ax(ByCz−BzCy)+Ay(BzCx−BxCz)+Az(BxCy
−ByCx).

A⋅(B×C)=C⋅(A×B)=B⋅(C×A),A×A=0,   i×j=k,   j×k=i,   k×i=j.
It	 follows	 from	 these	 that	 two	vectors	are	parallel	 to	each	other	 if	 their	cross	product	 is
equal	to	zero.

Del	operator	(in	a	Cartesian	coordinate	system)

∇=i∂∂x+j∂∂y+k∂∂z.
Laplace	operator	(in	a	Cartesian	coordinate	system)

Δ=∇⋅∇=∂2∂x2+∂2∂y2+∂2∂z2.
Gradient	of	a	scalar	function	U(r)	in	a	Cartesian	coordinate	system	is	determined	by	the
following	equation:

grad U(r)≡∇(r)≡i∂U(r)∂x+j∂U(r)∂y+k∂U(r)∂z.
The	direction	of	the	vector	∇U	coincides	with	the	direction	of	the	fastest	increase	of	the
scalar	function	U(r).

Divergence	of	a	vector	field	F(r)	in	a	Cartesian	coordinate	system	is	determined	by	the
following	equation:

div	F(r)≡∇⋅F(r)=∂Fx(r)∂x+∂Fy(r)∂y+∂Fz(r)∂z
This	can	be	thought	of	as	the	scalar	product	of	vectors	operator	∇	with	vector	F.
According	 to	Gauss’s	 theorem,	 the	 integral	 of	 the	 flux	 of	 vector	F(r)	 over	 a	 closed

surface	A	can	be	expressed	as	the	integral	over	the	volume	enclosed	by	the	surface	A:

∮AF(r)⋅dA=∫Voldiv	F(r)dr3,
where	the	elementary	vector	dA	=	ndA	and	n	is	the	unit	vector	that	is	outward	normal	to
the	 surface	 dA.	 If	 div	 F(r)	 =	 0,	 the	 vector	 field	 F(r)	 is	 called	 “solenoidal”	 and	 in
accordance	with	 the	preceding	equation,	 the	 flux	of	 the	solenoidal	 field	over	any	closed
surface	 is	 equal	 to	 zero.	 Note	 that	 the	 flux	 dΦ	 of	 vector	 F	 through	 the	 area	 dA	 is
determined	by	the	equation	dΦ=F⋅dA.
The	curl	of	a	vector	field	F(r)	in	the	Cartesian	coordinate	system	is	determined	by	the

following	equation:

curl F(r)=∇×F(r)=|	ijk∂∂x∂∂y∂∂zFxFyFz	|,
that	is,	the	curl	of	the	vector	field	F(r)	is

∇×F(r)=i(∂Fz∂y−∂Fy∂z)+j(∂Fx∂z−∂Fz∂x)+k(∂Fy∂x−∂Fx∂y).
According	to	Stokes’	theorem,	an	integral	over	a	closed	path	L	of	the	vector	F(r)	can	be
transformed	into	an	integral	over	the	surface	that	has	the	path	as	its	border:



∮LF(r)⋅dl=∫A∇×F(r)⋅dA.
If	∇	 ×	F	 =	 0,	 the	 vector	 field	F(r)	 is	 called	 potential	 field	 and	 in	 accordance	with	 the
equation	given	earlier,	the	integral	of	F(r)⋅dl	over	any	closed	path	is	equal	to	zero.
For	 any	 scalar	 functions	U(r)	 and	V(r)	 or	 vector	 fields	F(r)	 and	G(r),	 the	 following

relations	are	true:

∇(U(r)+V(r))=∇U(r)+∇V(r),∇⋅(F(r)+G(r))=∇⋅F(r)+∇⋅G(r),
∇(U(r)V(r))=V(r)∇U(r)+U(r)∇V(r),∇⋅(U(r)F(r))=F(r)⋅∇U(r)+U(r)∇⋅F(r),

∇×(U(r)F(r))=U(r)(∇×F(r))+(∇U(r))×F(r),∇⋅(F(r)×G(r))=G(r)⋅(∇×F(r))−F(r)⋅(∇×G(r)),
div(curlF(r))=∇(∇×F(r))=0,

curl(gradU(r))=∇×(∇U(r))=(∇×∇)U(r)=0,
curl(curlF(r))=∇×(∇×F(r))=∇(∇⋅F(r))−(∇⋅∇)F(r)=grad(div F(r)−∇2F(r)).

C.2	TENSOR	ALGEBRA
The	 second-order	 tensor	 T^	 is	 described	 by	 nine	 scalar	 components.	 In	 the	 Cartesian
coordinates,	 they	 are	 denoted	 as	 Txx,Txy,Txz,Tyx,Tyy,Tyz,Tzx,Tzy,Tzz or 
T11,T12,T13,T21,T22,T23,T31,T32,T33,	respectively:

T^=(TxxTxyTxzTyxTyyTyzTzxTzyTzz)   or   T^=(T11T12T13T21T22T23T31T32T33) .

If	A	and	B	are	vectors	in	a	Cartesian	coordinate	system	and	a	tensor	T^	transforms	vector
A	into	the	vector	B,	the	transformation	can	be	defined	by	the	following	equation:

B=T^A     or   Bi=∑j=13TijAj,

This	 transformation	 rotates	 vector	 A	 in	 space	 as	 well	 as	 stretches	 (or	 shrinks)	 its
components	Ai.	Note	that	the	equation	given	earlier	can	be	written	in	the	following	matrix
form:

(B1B2B3)=(T11T12T13T21T22T23T31T32T33)(A1A2A3).

Addition	of	the	second-rank	tensors:
(T11T12T13T21T22T23T31T32T33)+(D11D12D13D21D22D23D31D32D33)=

(T11+D11T12+D12T13+D13T21+D21T22+D22T23+D23T31+D31T32+D32T33+D33),Tij+Dij=
(T+D)ij.

Multiplication	of	tensor	T^	by	a	scalar	α:
αT^=α(T11T12T13T21T22T23T31T32T33)=

(αT11αT12αT13αT21αT22αT23αT31αT32αT33),(αT^)ij=αTij.

Tensors	 are	 linear	 operators,	 so	 for	 arbitrary	 vectors	A	 and	B	 and	 scalars	 α	 and	 β,	 the
following	relation	is	true:

T^(αA+βB)=αT^A+βT^B.

Multiplication	of	tensors	is	performed	as	multiplication	of	matrices,	that	is,

T^D^=C^,   Cij=∑lTijDij.



The	identity	tensor	has	the	following	components:

Iij=δij={	1,i=j,0,i≠j.

The	identity	tensor	transforms	any	vector	A	into	itself:

I^A=A,    ∑j=13IijAj=∑j=13δijAj=Ai.

For	 any	 tensor	 D^	 with	 components	 Dij,	 there	 is	 a	 transpose	 tensor	 D^T	 with	 the
components	Dji,	so	the	transposition	swaps	the	indices:

if D^=(D11D12D13D21D22D23D31D32D33), then D^T=
(D11D21D31D12D22D32D13D23D33).

The	tensor	is	symmetric	if	D^=D^T,	that	is,	Dij	=	Dji,	and	the	tensor	is	antisymmetric	(or
skew	tensor)	if	D^=−D^T,	that	is,	Dij=−Dji.

The	determinant	of	the	tensor	D^	is	the	determinant	of	its	matrix:

detD^=det(D11D12D13D21D22D23D31D32D33)=D11(D22D33−D32D23)−D12(D21D33−D31D23)+D13(D21D32−D22D31).

The	tensor	D^	is	called	singular	if	its	determinant	is	equal	to	zero.

For	any	nonsingular	tensor	T^,	there	is	an	inverse	tensor	T^−1:

T^T^−1=T^−1T^=I^,     (T^−1)−1=T^.

COORDINATE	TRANSFORMATIONS
Let	us	consider	two	coordinate	systems	with	basis	vectors	(e1,e2,e3)  and	(e′1,e′2,e′3),	as
shown	 in	 Figure	 C.4.	 In	 each	 Cartesian	 coordinate	 system,	 we	 have	 the	 following
identities	for	the	scalar	products	of	the	basis	vectors:

ei⋅ej=δij  and  ei′⋅e′j=δij    where  δij={	1,i=j0,i≠j.

FIGURE	C.4	Three	out	of	nine	components	of	tensor	λ^	and	λ^T	are	shown.

A	vector	A	can	be	presented	by	its	components	in	each	of	these	two	coordinate	systems:

F=F1e1+F2e2+F3e3=∑j=1,2,3Fjej,

F=F′1e′1+F′2e′2+F′3e′3=∑j=1,2,3F′je′j.



The	 components	Fi	 and	 F′	 are	 projections	 of	 the	 vector	 F	 on	 the	 corresponding	 basis
vectors	ei	и	e′i:

Fi=ei⋅F,     Fi′=ei′⋅F.
Let	us	determine	the	relation	between	the	components	in	these	two	coordinate	systems:

Fi′=ei′⋅F=(ei′⋅∑jFjej)=∑j(ei′⋅ej)Fj=∑jλijFj,
where	λij=ei′⋅ej	are	the	elements	of	the	tensor	λ^	that	transforms	unit	vectors	of	coordinate
system	(e1,	e2,	e3)	into	(e′1,e′2,e′3) , e′k=∑i=13λkiei.	The	transposed	matrix	λ^T	performs
the	inverse	transformation	ei=∑k=13(λ−1)ike′k;	here	(λ−1)ik=(λT)ik=λki	(see	Figure	C.4).

Let	 us	 write	 the	 components	 of	 a	 tensor	 T^′=T′ij	 in	 the	 basis	 e′k	 knowing	 the
components	of	T^=Tlk	in	the	given	basis	ek:

T′ij=∑k=13∑l=13λikTkl(λT)ij.

TENSOR	DIAGONALIZATION
Transformation	 from	 one	 coordinate	 system	 to	 another	 changes	 the	 tensor	 components.
So,	 a	 transformation	 can	 be	 found	 that	 diagonalizes	 any	 nonsingular	 tensor.	 As	 an
example,	let	us	consider	the	diagonalization	of	the	relative	dielectric	permittivity	tensor:

κ^	=	(κ11κ12κ13κ21κ22κ23κ31κ32κ32).

We	write	a	characteristic	equation	for	the	matrix	of	that	tensor:

|	κ11−λκ12κ13κ21κ22−λκ23κ31κ32κ32−λ	|=0.

This	is	a	cubic	equation	and	it	will	have	three	roots	λ1,	λ2,	and	λ3.	For	each	root	λj	(here	j
=	1,	2,	3),	there	is	an	eigenvector	aj	(lj,	mj,	nj)	with	components	lj,	mj,	nj,	that	can	be	found
by	solving	the	system	of	equations:

(κ11−λj)lj+κ12mj+κ13nj=0,κ21lj+(κ22−λj)mj+κ23nj=0,κ31lj+κ32mj+(κ33−λj)nj=0.

The	vectors

a1(l1,m1,n1),    a2(l2,m2,n2),   a3(l3,m3,n3)

can	be	normalized	to	get	basis	vectors	of	a	new	coordinate	system

e1(l1′,m1′,n1′),    e2(l2′,m2′,n2′),   e3(l3′,m3′,n3′),

where

lj′→ljlj2+mj2+nj2m′j→mjlj2+mj2+nj2n′j→njlj2+mj2+nj2

In	the	new	coordinate	system,	the	tensor	κ^	is	diagonal	with	components	λ1,	λ2,	λ3:

κ^	=(λ1000λ2000λ3).

We	 complete	 discussion	 of	 diagonalization	 by	 considering	 numerical	 example.	 For	 the
tensor

D^=(7−20−26−20−25).

The	characteristic	equation



|	7−λ−20−26−λ−20−25−λ	|=λ3−18λ2+99λ2−162=0

has	three	roots:	λ1	=	3,	λ2	=	6,	and	λ3	=	9.

Solving	the	system	of	equations

(7−λj)lj−2mj=0,−2lj+(6−λj)mj−2nj=0,−2mj+(5−λj)nj=0

and	performing	normalization,	we	get	three	basis	vectors	of	the	coordinate	system:

e1(l′1,m′1,n′1)=e1(13,23,23),e2(l′2,m′2,n′2)=e2(23,13,−23),e3(l′3,m′3,n
′3)=e3(−23,23,−13),

in	which	the	matrix	of	tensor	D^	becomes	diagonal	with	λ1	=	3,	λ2	=	6,	λ3	=	9:

D^=(300060009).



Index
A
Absorbing	media,	152,	153,	159,	223,	293–296,	312,	315

Alternating	current,	59

Amperes’	force,	29–30

Ampere’s	law,	34–36,	39,	42,	43,	108,	109,	168,	169,	292

Amplifying	media,	312

amplification	in	absorbing	media,	296–302
attenuation	in	absorbing	media,	293–296
dispersion,	287–292
laser,	302–309

Amplitude	array,	186

Amplitude–phase	diffraction	gratings,	186

Angle	of	dielectric	losses,	311

Angle	of	magnetic	losses,	311

Angular	dispersion,	190

Anomalous	dispersion,	290

Antenna

aperture,	253
closed	oscillatory	circuit,	252
current	and	voltage,	252
directional	diagram
antenna	pattern,	249–250
half-wave	Hertz	dipole,	250
normalized,	248
symmetric	dipole	antenna,	250–251
toroid-shaped,	248–249
unidirectional,	248–249
width	of	diagram,	248–249
feeder,	252
ground-wave,	253
horn
combined,	256
conical,	256
phase	distribution,	aperture,	256–258
pointed	pyramidal,	256
sectoral,	255–256
wedge	pyramidal,	256
lattices,	253
linear,	253
open	oscillatory	circuit,	252
operating	height	of	a	receiving,	253
receiving	antenna,	253
transmitting,	251

Antinodes,	standing	waves,	93

Aperture

antenna,	253



lightguide,	235

Atomic	number,	3

Attenuation	(amplification)	coefficient,	312

B
Bardeen,	Cooper,	and	Schrieffer	(BCS)	theory,	167

Biaxial	crystals,	133

Biot–Savart	law,	32

Bloch	wave	number,	200

Bloch	wave	vector,	199

Bohr	model,	172

Bose	condensation,	167

Bouguer’s	law,	293–296,	301

Boundary	conditions

direct	problems,	102
electric	field
dielectric	displacement	vector,	104
dielectric	permittivities,	104
direction	change	of	vectors,	105–106
electric	displacement	vector,	Gauss’s	law,	103–104
normal	component	of	vector,	104
tangential	components	of	displacement,	105
tangential	components	of	vectors,	104
magnetic	field
air	gap	of	ferromagnetic	core,	109–110
dielectric	permittivities,	107
normal	component	of	magnetic	intensity,	107
normal	components	of	vectors,	107
surface	current,	Ampere’s	law,	108
tangential	component	of	magnetic	intensity,	108

Bragg’s	angle,	193

Bragg’s	diffraction,	193

Bragg’s	equation,	193

Bragg’s	reflection,	195

Brewster’s	angle,	115–116

Broken	total	internal	reflection	method,	see	Prism	method

Broken	total	reflection,	see	Electromagnetic	tunneling

C
Capacitance,	12–14

Chiral	smectic	LCs,	142

Cholesteric	LCs,	142

Closed	oscillatory	circuit,	252

Coaxial	transmission	lines,	207–209,	230–231

Coherence	length,	98



Coherence	time,	97

Combined	horn,	256

Complex	permittivity	and	permeability;	see	also	Electromagnetic	tunneling;	Negative	refraction

absorbing	media,	312
amplifying	media,	312
angle	of	dielectric	losses,	311
angle	of	magnetic	losses,	311
attenuation	(amplification)	coefficient,	312
energy	flow
counterpropagating	waves,	315–316
impedance,	317
linearly	polarized	wave,	314–315
two	independent	sources,	314–315
impedance	real	and	imaginary	parts,	313–314
passive	media,	312
right-	and	left-handed	media
active,	318–319
backward	waves,	318
impedance,	319
passive,	318–320
Poynting	vector,	318–319
refractive	index,	317–320

Conical	horn	antenna,	256

Conservation	of	electric	charge,	3

Continuous	absorption	spectrum,	294

Cooper	pairs,	167–168,	171

Coordinate	transformations,	341–342

Cotton–Mouton	effect,	278

Coulomb	repulsion,	167–168

Coulomb’s	law

Coulomb	forces,	3–4,	6
infinitely	small	charge,	5
Newton’s	third	law,	4
superposition	principle,	4–5

Critical	frequency,	218

Critical	regime,	221–222

Critical	wavelength,	215,	218

Crystals	of	cubic	symmetry,	133

Cyclotron	frequency,	264–266

Cylindrical	waves,	79

D
Del	operator,	337

Dielectric	permittivity	tensor,	magnetoactive	plasma

cyclotron	frequency,	264–266
electric	displacement	vector,	265
harmonic	time	dependence,	265



magnetized	plasma,	264
nonmagnetized	plasma,	263
plasma	frequency,	264–265,	267
polarization,	264
refractive	index,	266–267
resonant	frequency,	266

Dielectric	polarization,	22

Diffraction,	periodic	structures

definition,	177
Fresnel	zones
radii,	circular	hole,	180–181
total	amplitude	of	oscillations,	181
wave	surfaces,	179–180
geometrical	optics,	177,	181
Huygens–Fresnel	principle,	177–178,	182
by	a	1D	lattice,	186–190
amplitude	array,	186
angular	dependence	of	intensity,	187–188
angular	dispersion,	190
diffraction	spectrum,	189
distribution	of	light	intensity,	187
geometric	path	difference	of	rays,	186
grating	intensity	distribution,	188
intensity	of	diffraction	pattern,	187
maxima	and	minima	of	function,	188–189
phase	array,	186
wavelength,	189–190
patterns
construction,	178
Fraunhofer	approximation,	179
Fresnel	approximation,	179
interference	of	secondary	waves,	177
maxima	and	minima,	181
Maxwell’s	equations	with	boundary	conditions,	177
by	a	slit
angular	dependence	of	intensity,	184
angular	width	and	linear	width,	185
Fraunhofer	diffraction,	182–183
intensity	distribution,	184
maxima	and	minima,	184–185
phase	of	wavelet,	183
resultant	electric	field,	183
wave	amplitude,	183
by	a	3D	lattice
Bragg’s	diffraction,	193
Cartesian	coordinate	system,	191
far-field	diffraction	pattern,	191–192
interplanar	distance,	193
lattice	constant,	191
Laue	equations,	191
opaque	screen	with	periodically	located	holes,	190
optical	homogeneity,	192
polycrystalline	material,	193–194
wavelength,	191–192
X-ray	diffraction,	191,	193
wave	front,	177–178

Directional	diagram



antenna	pattern,	249–250
half-wave	Hertz	dipole,	250
normalized,	248
symmetric	dipole	antenna,	250–251
toroid-shaped,	248–249
unidirectional,	248–249
width	of	diagram,	248–249

Divergence

scalar	product,	18–19
of	a	vector	field,	338

Drude	formula,	165

Dye	laser,	308

E
Electric	displacement,	22–23

Electric	field

charged	ring,	9
in	conductor,	22
conservative	field,	10
in	dielectric,	22–23
and	electric	potential
Cartesian	coordinates,	18
differential	operator,	17
divergence,	18
potential	gradient,	17
scalar	equations,	16
volume	integral,	17
elementary	work,	9–10
Gauss’s	law,	14–16
integration,	8
lines,	6–7
nonzero	dipole	moment,	8
superposition	principle,	7–8
vector,	6,	8
volume	energy	density,	23

Electric	potential

and	charge	density,	19
dipole,	11–12
and	electric	field
Cartesian	coordinates,	18
differential	operator,	17
divergence,	18
potential	gradient,	17
scalar	equations,	16
volume	integral,	17
energy,	10–11
equipotential	surface,	12–14
unit,	11

Electrodynamics,	see	Electromagnetism

Electromagnetic	tunneling

electric	and	magnetic	field	waves,	321
electric	field	amplitude	in	different	layers,	322



energy	density,	321
imaginary	impedance,	321
imaginary	refractive	index	and	wave	number,	320
wave	intensity	calculation,	323–324

Electromagnetic	waves

amplification
blackbody	radiation	spectral	density,	300
induced	(stimulated)	transitions,	298–301
inversion,	301
lamp	vs.	laser	illumination,	301–302
metastable	levels,	296–297
negative	absorption,	297
nonradiative	transition,	297
photons,	absorption	and	emission,	297–298
population	inversion,	296
spectral	density,	299
spontaneous	transition,	297–298,	300–301
states	with	inverted	population,	301
total	radiated	power,	300
two-level	system,	298
attenuation
Bouguer’s	law,	293–296
coefficient	of	absorption,	293–294
continuous	absorption	spectrum,	294
electric	field	wave	in	plate,	295–296
light	filters,	294
line	absorption	spectrum,	294
penetration	depth,	293–294
boundary	conditions
electric	field,	103–107
magnetic	field,	107–110
in	chiral	media
artificial	media,	142
chirality	parameter,	142
circular	polarizations,	144,	146
constitutive	equations,	142
coupled	second-order	differential	equations,	145
curl	operator,	145
electromagnetic	particles,	142
homogeneous	medium,	145
independent	Helmholtz	equations,	146
material	relationships,	143–144
Maxwell’s	equations,	145
nonreciprocity,	143
normal	waves,	146–147
propagation	constants,	146–147
refractive	indices,	146
spatial	dispersion,	143
Tellegen’s	medium,	143
in	continuous	periodic	media
amplitude,	195–196
Bragg’s	reflection,	195
counterpropagating	waves,	197
forbidden	band,	196
linearly	polarized	wave,	194
second-order	differential	equation,	195
transparent	nonmagnetic	medium,	194
dispersion



absorption,	287
anomalous,	290
complex	dielectric	permittivity,	292
definition,	287
external	and	internal	electrons,	288
forced	oscillation,	287–288
linearly	polarized	monochromatic	wave,	288–289
normal,	290
oscillating	electrons,	287
oscillator	strength,	291
refractive	index	frequency	dependence,	289–292
energy
flux	density,	89–91
Poynting	vector,	90
volume	energy	density,	89
wave	intensity,	91
interference
and	coherence,	97–98
definition,	95
electric	fields,	95–96
maxima	and	minima,	96
path	difference,	97
phase	difference,	96–97
vector	diagram,	95–96
wave	intensity,	95–96
wave	phases,	97
laws	of	reflection	and	refraction
incident	wave,	112
interface	of	two	dielectric	media,	110
light	beam’s	trajectory,	112–113
parallel	polarization,	111
plane	of	incidence,	111
Poynting	vectors,	111
superposition	principle,	110
tangential	components,	112
magnetoactive	plasma
cyclotron	resonance	absorption,	271–272
longitudinal	propagation,	268–270
transverse	propagation,	270–271
media	with	negative	value
of	both	material	constants,	324–327
of	one	of	its	material	constants,	320–324
momentum,	91–92
optically	active	media
bi-isotropic	medium,	141,	143,	147
liquid	crystals	(LCs),	141–142
optical	activity	definition,	141
solid-state	crystals,	142
photonic	crystals
1D,	202
photonic	bandgap,	201–202
photonic	structures,	201
3D,	202–203
2D,	202
waveguides,	202
in	planar	layered	periodic	structures
Bloch	wave	number,	200
Floquet–Bloch	theorem,	199
Hill	equation,	198



1D	wave	equation,	198
quadratic	equation,	199
reflection	and	transmission	coefficients,	200–201
tangential	components,	199
plane	monochromatic	waves
complex	amplitudes,	77–78
cylindrical	waves,	79
differential	form	of	Maxwell’s	equations,	78
direction	cosines	of	vector	k,	76–77
divergence	of	vector,	78
electric	field	vector,	79–80
Euler’s	formulas,	77
linear	superposition,	77
spherical	waves,	79
wave	impedance,	79
wavelength,	76
wave	number,	80
wave	phase,	76
wave	propagation,	76
wave	vector	components,	76
polarization
circular	polarization,	81,	83–84
cyclotron	radiation,	84
direction,	82
elliptical	polarization,	80–82
linear	polarization,	81
monochromatic	radiation,	83
net	electric	field,	81
partial,	83
plane,	80
thermal	radiation,	84
reflection	and	transmission	coefficients
Brewster’s	angle,	115–116
Fresnel	equations,	114–115
p-polarized	wave,	114
s-polarization,	114
TIR,	114,	117–120
reflection	from	dielectric	plate
magnetic	and	electric	field	vectors,	120
n1	<	n2	and	n3	>	n2	case,	122–123
n1	<	n2	and	n3	<	n2	case,	122
reflection	and	transmission	coefficients,	121
superposition	of	two	counterpropagating	waves,	121
spectrum
gamma	radiation,	73
infrared	radiation	(IR),	73
radio	waves,	71
ranges,	71–72
terahertz	(THz)	waves,	72–73
ultraviolet	(UV)	radiation,	73
visible	light,	73
X-rays,	73
standing	waves,	93–94
superposition	principle
continuously	distributed	monochromatic	waves,	87
electric	field	time	dependence,	86
electric	field	vectors,	85
group	velocity,	87–89
modulated	wave	packet,	88–89



net	electric	field,	86
phase	velocity,	88–89
sum	of	sine	waves,	85
traveling	wave	with	variable	amplitude,	86–87
wave	fields,	85
wave	packet,	87–88
wave	equation
for	electric	field	vector,	74
in	a	homogeneous	media,	74
for	magnetic	intensity	vector,	74
in	vacuum,	75–76
waves,	definition	of,	73

Electromagnetic	waves	in	anisotropic	medium

dispersion	relation	and	normal	waves
crystals,	optical	properties,	133
dispersion	equation,	131
linear	homogeneous	equations,	131
nonmagnetic	medium,	133–134
orientation	of	vector	k,	131–132
phase	velocity,	133
ray	velocity,	133
refractive	index,	132
wave	equation,	130
wave	normal	lines	equation,	131
wave	numbers,	132
refractive	index	ellipsoid
directions	of	optical	axes,	139
energy	density	of	electric	field,	138
intersection,	139
negative	crystal,	140
positive	crystal,	140
surface	of	triaxial	ellipsoid,	139
wave	normal	surface,	140
structure
anisotropic	dielectric	permittivity	tensor,	128–129
anisotropic	magnetic	permeability	tensors,	129–130
electrodynamic	properties,	127–128
uniaxial	crystals
birefringence,	136
electric	displacement	vector,	135–136
extraordinary	wave,	135–136
Huygens’	principle,	136
longitudinal	and	transverse	dielectric	constants,	135
optical	axis,	135
ordinary	wave,	135–136
principal	section,	135
spherical	and	ellipsoidal	surfaces,	136–137
surface	of	positive	crystal,	136
wave	surface,	136

Electromagnetic	waves	in	conducting	media

dielectric	permittivity	and	impedance
complex	impedance,	153
complex	permittivity,	152
current	density,	151
dispersion	equation,	152
electric	loss	tangent,	152
frequency	dependence,	153–155



Maxwell’s	equations,	151
monochromatic	harmonic	waves,	151
skin	effect
anomalous,	157
complex	impedance,	156
high	conductivity,	155–156
low	conductivity,	155
mean	free	path	length,	157
plasma	frequency	of	electrons,	157–158
refractive	index	modulus,	156
skin	layer,	155
wave	amplitude,	155
superconductivity
BCS	theory,	167
boson	pair,	167
complex	conductivity,	170
Cooper	pairs,	167–168
Coulomb	repulsion,	167–168
critical	current,	169
critical	field,	168
critical	temperature,	167
electrodynamics	of	superconductors,	169
Meissner	effect,	168–169
phonons,	167–168
quantum	effects,	171–173
second	London	equation,	169
surface	waves
interface	between	transparent	dielectric	and	metal,	166–167
interface	between	two	dielectrics,	164–166
interface	between	two	different	media,	162–164
wave	incidence	on	metal	surface
boundary	conditions,	159–161
ideal	conductor,	160
incident	and	reflected	waves,	160–161
Leontovich	boundary	condition,	160
nonuniform	refracted	wave,	159
polarization,	158
power	losses	with	p-	and	s-polarizations,	161–162
surface	impedance,	159
surfaces	of	equal	phases,	159
vector	ratio,	159

Electromagnetism

boundary	conditions,	102
boundary	value	problems,	101–102
continuum	model,	102
direct	problems,	101–102
inverse	problems,	101

Electrostatics

Coulomb’s	law
Coulomb	forces,	3–4,	6
infinitely	small	charge,	5
Newton’s	third	law,	4
superposition	principle,	4–5
electric	charge
conservation	of	electric	charge,	3
definition,	3
neutrons,	3



positive	and	negative	charges,	3
proton	and	electron,	3
protons	and	electrons,	3
quantum,	3
electric	field
charged	ring,	9
in	conductor,	22
conservative	field,	10
in	dielectric,	22–23
and	electric	potential,	16–18
elementary	work,	9–10
Gauss’s	law,	14–16
integration,	8
lines,	6–7
nonzero	dipole	moment,	8
superposition	principle,	7–8
vector,	6,	8
volume	energy	density,	23
electric	potential
and	charge	density,	19
dipole,	11–12
and	electric	field,	16–18
energy,	10–11
equipotential	surface,	12–14
unit,	11
Laplace	equation,	19
Poisson’s	equation,	19
thermionic	current,	20

E-plane	sectoral	horn,	256

Equipotential	surface,	12–14

Excimer	lasers,	307

Extraordinary	normal	wave,	271

F
Fabry–Perot	resonator,	302–303

Faraday	effect,	270

Faraday’s	law

Ampere’s	force,	50
electromagnetic	induction,	49
induced	emf,	49–50
Lenz’s	rule,	50
magnetic	flux,	49–51

Feeder,	252

Ferrites

longitudinally	magnetized
left	circular	polarization,	281
polarization	plane	rotation,	282–283
real	and	imaginary	frequency,	282
right	circular	polarization,	281
subsystem,	280–281
magnetic	permeability
ferromagnetic	resonance,	275
forced	oscillations,	273



gyromagnetic	ratio,	272
high-frequency	magnetic	permeability	tensor,	274
high-frequency	magnetic	susceptibility	tensor,	274
Landau–Lifshitz	equation,	272,	275
precession,	273
real	and	imaginary	parts	frequency,	275–276
saturation	magnetization,	273
transversely	magnetized
extraordinary	wave,	277
ordinary	wave,	277
polarization	ellipse,	278–280
subsystem,	276–277
wave	number	and	impedance,	277

Ferromagnetic	resonance,	275

Floquet–Bloch	theorem,	199

Forced	oscillation,	287–288

Fraunhofer	approximation,	179

Fraunhofer	diffraction,	182–183

Fresnel	approximation,	179

Fresnel	equations,	114–115

Fresnel	zones

radii,	circular	hole,	180–181
total	amplitude	of	oscillations,	181
wave	surfaces,	179–180

Fundamental	wave,	214,	219

G
Gas	lasers

excimer,	307
ion,	306
metal	vapor,	307
molecular,	307
neutral	atoms,	306

Gaussian	units,	330

Gauss’s	law

electric	displacement	vector,	103–104
electric	field,	14–16
first	Maxwell’s	equations,	62
magnetic	field,	35

Gradient	fiber,	234

Gradient	of	a	scalar	function,	338

Grating	method,	166

Ground-wave	antenna,	253

Group	velocity,	87–89

Guided	structures

centimeter	waves,	207
closed/screened	lines,	208



coaxial	transmission	lines,	207–209,	230–231
cross	sections,	208–209
damping	of	waves
attenuation	coefficient,	224–227
change	of	amplitude,	224
dependence	of	electric	field,	223
Leontovich	boundary	conditions,	224
linear	power	losses,	225
losses	in	metallic	walls,	223–224
decimeter	and	centimeter	wavelength	ranges,	208
definition,	207
electromagnetic	wave	spectrum,	207–208
field	between	two	parallel	metal	planes
critical	wavelength,	215
fundamental	wave,	214
incident	wave,	214
partial	waves,	214–215
phase	and	group	velocities	and	wavelength,	214
s-polarization	and	p-polarization	waves,	213–214
wave	propagation	process,	215
fields	in	rectangular	waveguide,	207
cavity	with	homogeneous	dielectric,	216
critical	frequency,	218
critical	wavelength,	218
distribution	constant,	218
electric	field	and	magnetic	fields	intensity,	217
fundamental	wave,	219
group	velocity,	218
monochromatic	wave	field,	217
phase	velocity,	218
standing	waves,	217
transverse	wave	number,	218
waveguide	length,	216
with	homogeneous	medium,	207
hybrid	waves,	208
with	inhomogeneous	filling,	208
open	lines,	208
optical	waveguides
fiber	lightguide,	234–235
planar	waveguide,	232–234
total	internal	reflection,	232
over	conducting	plane
energy	flow	vector	diagram,	211
incident	and	reflected	waves	intersection,	211–212
modes	of	waveguide,	210
monochromatic	waves,	210
permittivity	and	permeability,	210
p-polarization,	211–212
s-polarization,	211
wave	of	electric	type,	212
wave	of	magnetic	type,	211
reflections,	227–228
requirements,	209
striplines,	207–209,	231
TEM	wave,	207
TE	waves,	207
TM	waves,	207
two-wire	transmission	lines,	207–209,	229
UHFs,	207–208



waveguide	operating	conditions,	221–222

Gyromagnetic	ratio,	272

Gyrotropic	media

dielectric	permeability,	263–272
magnetic	permeability,	272–276

H
He–Ne	laser,	306–308

High-frequency	magnetic	permeability	tensor,	274

High-frequency	magnetic	susceptibility	tensor,	274

High-temperature	superconductors	(HTSs),	172–173

Hill	equation,	198

Horn	antenna

combined,	256
conical,	256
phase	distribution,	aperture,	256–258
pointed	pyramidal,	256
sectoral,	255–256
wedge	pyramidal,	256

H-plane	sectoral	horn,	256–257

HTSs,	see	High-temperature	superconductors

Huygens–Fresnel	principle,	177–178,	182

Huygens’	principle,	136

Hybrid	waves,	208

I
Identity	tensor,	340

Interplanar	distance,	193

Inverse	tensor,	341

Ion	lasers,	306

J

Josephson	junction,	172

K
Kirchhoff’s	loop	rule,	55,	58

Kretschmann’s	geometry,	166

L
Landau–Lifshitz	equation,	272,	275

Laplace	equation,	19

Laplace	operator,	337

Laser

coefficient	of	amplification,	303



coherence	time,	307
definition,	302
dye,	308
Fabry–Perot	resonator,	302–303
gas	lasers
excimer,	307
ion,	306
metal	vapor,	307
molecular,	307
neutral	atoms,	306
He–Ne	laser,	306–308
optical	shutter,	302
positive	feedback,	302
pumping	system,	302,	304
resonator
axis,	304
functions,	304
longitudinal	mode	frequency,	308–309
optical,	302–303
spherical	laser,	305–306
stability	and	instability,	306
semiconductor,	308
solid-state	lasers,	306
three-level,	304
uses,	308
wave	field	amplitude,	303

Laue	equations,	191

LCs,	see	Liquid	crystals

Left	circular	polarization	(LCP),	83

Lenz’s	rule,	50,	52

Leontovich	boundary	condition,	160

Light	Amplification	by	Stimulated	Emission	of	Radiation,	see	Laser

Light	filters,	294

Lightguide,	234–235

Line	absorption	spectrum,	294

Linear	antenna,	253

Liquid	crystals	(LCs),	141–142

Lorentz	force,	30

Lorentz	transformations,	49

M
Magnetic	field

Gauss’s	law,	35
magnetic	materials
Ampere’s	law,	42
macroscopic	currents,	41–42
magnetic	field	intensity,	42–43
magnetic	properties,	41
magnetic	susceptibility,	43
magnetization,	42
microscopic	currents,	41–42



relative	magnetic	permeability,	41,	43
total	magnetic	moment,	42
moving	charges	and	currents,	32–34
solenoid
axial	symmetry,	38
calculation,	37,	39
infinitely	long,	39–40
longitudinal	component	of	current,	39
magnetic	field	lines,	36
number	of	ampere-turns	per	meter,	38
outgoing	and	incoming	currents,	39
transverse	components	of	current,	39
vector,	29

Magnetic	gyrotropy,	272

Magnetic	permeability,	ferrites

ferromagnetic	resonance,	275
forced	oscillations,	273
gyromagnetic	ratio,	272
high-frequency	magnetic	permeability	tensor,	274
high-frequency	magnetic	susceptibility	tensor,	274
Landau–Lifshitz	equation,	272,	275
precession,	273
real	and	imaginary	parts	frequency,	275–276
saturation	magnetization,	273

Magnetoactive	plasma

dielectric	permittivity	tensor
cyclotron	frequency,	264–266
electric	displacement	vector,	265
harmonic	time	dependence,	265
magnetized	plasma,	264
nonmagnetized	plasma,	263
plasma	frequency,	264–265,	267
polarization,	264
refractive	index,	266–267
resonant	frequency,	266
electromagnetic	waves
cyclotron	resonance	absorption,	271–272
longitudinal	propagation,	268–270
transverse	propagation,	270–271

Magnetostatics

Ampere’s	law
Cartesian	coordinates,	35
Gauss’s	theorem,	35
line	integral	of	vector,	34–35
Maxwell’s	equation,	35
solenoidal	fields,	35
Stokes’	theorem,	35
Biot–Savart	law,	32
magnetic	field
lines,	29
in	a	medium,	41–43
moving	charges	and	currents,	32–34
of	solenoid,	36–40
vector,	29
magnetic	interaction,	29



moving	charges	interaction
Amperes’	force,	29–30
angular	velocity,	30
Lorentz	force,	30
magnetic	force,	29
magnitude	of	force,	29,	31
position	of	vectors,	30

Maxwell’s	equations,	electromagnetic	fields

continuity	equation,	64
differential	form,	plane	monochromatic	waves,	78
displacement	current,	59–61
Faraday’s	law
Ampere’s	force,	50
electromagnetic	induction,	49
induced	emf,	49–50
Lenz’s	rule,	50
magnetic	flux,	49–51
first	equation,	Gauss’s	law,	62
fourth	equation,	63
Gauss’s	and	Stokes’	theorems	of	vector	analysis,	63
limitations,	49
Lorentz	transformations,	49
magnetic	field	energy,	54–55
magnetic	permeability,	63
magnetic	susceptibility,	63
in	medium,	63
mutual	inductance,	53
second	equation,	Ampere’s	law,	62
self-inductance,	52–53
static	fields,	63
third	equation,	62
transient	processes	in	circuits
with	capacitors,	55–57
with	inductors,	57–59
Ohm’s	law,	55
slowly	varying/quasi	stationary,	55
in	vacuum,	64–65
wave	optics,	49

Medium	waves,	72

Meissner	effect,	168–169

Metal	vapor	lasers,	307

Metastable	levels,	296–297

Molecular	lasers,	307

Multimode	waveguide	operation,	221

N
Negative	absorption,	297

Negative	refraction

crystal	lattice,	324
isotropic	nonabsorbing	medium,	325
left-handed	media,	326–327
Poynting	vector,	325
refractive	index,	325



Negative	value,	media	in

both	materials	constant,	324–327
one	material	constant,	320–324

Nematic	LCs,	142

Newton’s	second	law,	169

Nodes,	standing	waves,	93

Nonstationary	Josephson	effect,	172

Normal	dispersion,	290

Normalized	directional	diagram,	248

Normal	waves,	270

O
Ohm’s	law,	55

One-dimensional	(1D)	photonic	crystals,	202

Open	oscillatory	circuit,	252

Operating	height	of	a	receiving	antenna,	253

Optical	fiber,	207,	234

Optical	quantum	generators,	see	Laser

Optical	resonator,	302–303

Ordinary	wave,	270

Oscillator	strength,	291

Otto’s	geometry,	166

P
Parallel	polarization,	111

Partial	waves,	214–215

Passive	media,	296,	297,	312,	313,	318–320

Phase	array,	186

Phase	velocity,	88–89

Photonic	crystals

1D,	202
photonic	bandgap,	201–202
photonic	structures,	201
3D,	202–203
2D,	202
waveguides,	202

Physical	constants	and	SI	units,	329–330

Planar	waveguide,	207,	232–234

Planck	constant,	171

Plane	of	incidence,	111

Plane	of	polarizer,	84

Plasma	frequency,	165,	264–265,	267



Pointed	pyramidal	horn,	256

Poisson’s	equation,	19

Population	inversion,	296

Potential	gradient,	17

Poynting	vectors,	90,	94,	129–130,	221,	241,	243–244,	325

p-polarization,	111,	213–214

Precession,	273

Prism	method,	166

Q
Quantized	quantities,	3

Quantum	effects,	superconductivity

current	energy,	171
de	Broglie	wave,	172
HTSs,	172–173
Josephson	junction,	172
momentum	of	Cooper	pairs,	171
Planck	constant,	171
quantization	of	magnetic	flux,	171

Quantum	of	magnetic	flux,	171

R
Radiation	emission

accelerated	moving	charge
charged	particle	velocity,	239–240
electric	field	lines,	239–240
magnetic	component,	wave	field,	240
mean	power	radiation,	242
power	radiation,	241
Poynting	vector,	241
radial	component,	wave	field,	240
radiative	friction	force,	242
electric	dipole
electric	field	lines,	245
electromagnetic	wave	generation,	244
energy	flux	density,	244
far-field	zone,	243–244
hertz	dipole,	243
magnetic	and	electric	fields	amplitude,	245
near-field	zone,	243
radiation	power,	244
elementary	magnetic	dipole
energy	flux	density,	246
radiation	power,	247
radiation	resistance,	248
vertical	magnetic	dipole,	246

Radiative	friction	force,	242

Radio	waves,	71–72

Receiving	antenna,	253



Rectangular	resonator,	219

Reflection	coefficient,	228

Relaxation	time,	273

Right	circular	polarization	(RCP),	83

S
Saturation	magnetization,	273

Scalar/dot	product	vectors,	335–336

Sectoral	horn	antenna,	255–256

Semiconductor	laser,	308

Single-mode	waveguide	operation,	221

Smectic	LCs,	142

Snell’s	law,	112,	325

Solenoid

axial	symmetry,	38
calculation,	37,	39
definition,	35
infinitely	long,	39–40
longitudinal	component	of	current,	39
magnetic	field	lines,	36
number	of	ampere-turns	per	meter,	38
outgoing	and	incoming	currents,	39
transverse	components	of	current,	39

Solid-state	lasers,	306

Spatial	coherence,	97–98

Spherical	waves,	79

s-polarization,	114,	213–214

Standing	wave	ratio	(SWR),	228

Standing	waves,	93–94,	217

States	with	inverted	population,	301

Stationary	Josephson	effect,	172

Step	fiber,	234

Stimulated	emission,	297–300

Stokes’	theorem,	338

Striplines,	207–209,	231

Subcritical	regime,	221

Superconductivity

BCS	theory,	167
boson	pair,	167
complex	conductivity,	170
Cooper	pairs,	167–168
Coulomb	repulsion,	167–168
critical	current,	169
critical	field,	168



critical	temperature,	167
electrodynamics	of	superconductors,	169
Meissner	effect,	168–169
phonons,	167–168
quantum	effects,	171–173
second	London	equation,	169

Supercritical	regime,	222

Superlong	waves,	72

Surface	active,	164

Surface	impedance,	159

Symmetric	antenna,	243,	250–253

T
Tellegen’s	medium,	143

Temporal	coherence,	97–98

Tensor	algebra,	339–344

Tensor	diagonalization,	342–344

Terahertz	(THz)	waves,	71–73

Theory	of	superconductivity,	see	Bardeen,	Cooper,	and	Schrieffer	theory

Thermionic	current,	20

Three-dimensional	(3D)	photonic	crystals,	202–203

Time	constant,	RC	circuit,	56–57

Toroidal	directional	diagram,	248–249

Total	internal	reflection	(TIR),	114

average	energy	flux	density,	119
definition,	117
inhomogeneous	wave,	119
optical	waveguides,	232
slow	wave,	119
superposition	of	incident	and	reflected	waves,	118
surface	wave,	119

Transmission	line,	see	Guided	structures

Transmission	line	efficiency,	228

Transmitting	antenna,	251

Transverse	electric	(TE)	waves,	163,	207

Transverse	electromagnetic	(TEM)	wave,	207

Transverse	magnetic	(TM)	waves,	163,	207

Traveling	wave	ratio	(TWR),	228

Two-dimensional	(2D)	photonic	crystals,	202

Two-wire	transmission	lines,	207–209,	229

U
Ultrahigh	frequencies	(UHFs),	207–208



Ultrashort	waves,	72

Uniaxial	crystals,	133

birefringence,	136
electric	displacement	vector,	135–136
extraordinary	wave,	135–136
Huygens’	principle,	136
longitudinal	and	transverse	dielectric	constants,	135
optical	axis,	135
ordinary	wave,	135–136
principal	section,	135
spherical	and	ellipsoidal	surfaces,	136–137
surface	of	positive	crystal,	136
wave	surface,	136

Unidirectional	diagram,	248–249

Unpolarized	radiation,	83

V

Vector	algebra,	335–339

Vector/cross	product	vectors,	336–339

Veselago	lens,	326

W
Waveguide,	see	Guided	structures

Wave	momentum	density,	91

Wave	train,	98

Wedge	pyramidal	horn,	256

Wide-range	antennas,	249

Width,	directional	diagram,	248–249

X
X-ray	diffraction,	191,	193
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